Loading…

T-matrix approach to seismic forward modelling in the acoustic approximation

Forward seismic modelling in the acoustic approximation, for variable velocity but constant density, is dealt with. The wave equation and the boundary conditions are represented by a volume integral equation of the Lippmann-Schwinger (LS) or Fredholm type. A T-matrix (or transition operator) approac...

Full description

Saved in:
Bibliographic Details
Published in:Studia geophysica et geodaetica 2012, Vol.56 (1), p.1-20
Main Author: Jakobsen, Morten
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Forward seismic modelling in the acoustic approximation, for variable velocity but constant density, is dealt with. The wave equation and the boundary conditions are represented by a volume integral equation of the Lippmann-Schwinger (LS) or Fredholm type. A T-matrix (or transition operator) approach from quantum mechanical potential scattering theory is used to derive a family of linear and nonlinear approximations (cluster expansions), as well as an exact numerical solution of the LS equation. For models of 4D anomalies involving small or moderate contrasts, the Born approximation gives identical numerical results as the first-order t-matrix approximation, but the predictions of an exact T-matrix solution can be quite different (depending on spatial extention of the perturbations). For models of fluid-saturated cavities involving large or huge contrasts, the first-order t-matrix approximation is much more accurate than the Born approximation, although it does not lead to significantly more time-consuming computations. If the spatial extention of the perturbations is not too large, it is practical to use the exact T-matrix solution which allows for arbitrary contrasts and includes all the effects of multiple scattering.
ISSN:0039-3169
1573-1626
DOI:10.1007/s11200-010-9081-2