Loading…

Optimal Parameters for Linear Second-Degree Stationary Iterative Methods

In this paper we show that the optimal parameters for linear second-degree stationary iterative methods applied to nonsymmetric linear systems can be found by solving the same minimax problem used to find optimal parameters for the Chebyshev iteration. In fact, the Chebyshev iteration is asymptotica...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on numerical analysis 1982-08, Vol.19 (4), p.833-839
Main Author: Manteuffel, T. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper we show that the optimal parameters for linear second-degree stationary iterative methods applied to nonsymmetric linear systems can be found by solving the same minimax problem used to find optimal parameters for the Chebyshev iteration. In fact, the Chebyshev iteration is asymptotically equivalent to a linear second-degree stationary method. The method of finding optimal parameters for the Chebyshev iteration given in Manteuffel [Numer. Math., 28 (1977), pp. 307-327] can be used to find optimal parameters for the stationary method as well.
ISSN:0036-1429
1095-7170
DOI:10.1137/0719058