Loading…
Tucker Dimensionality Reduction of Three-Dimensional Arrays in Linear Time
We consider Tucker-like approximations with an $r \times r \times r$ core tensor for three-dimensional $n \times n \times n$ arrays in the case of $r \ll n$ and possibly very large $n$ (up to $10^4$-$10^6$). As the approximation contains only $\mathcal{O}(rn + r^3)$ parameters, it is natural to ask...
Saved in:
Published in: | SIAM journal on matrix analysis and applications 2008-01, Vol.30 (3), p.939-956 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider Tucker-like approximations with an $r \times r \times r$ core tensor for three-dimensional $n \times n \times n$ arrays in the case of $r \ll n$ and possibly very large $n$ (up to $10^4$-$10^6$). As the approximation contains only $\mathcal{O}(rn + r^3)$ parameters, it is natural to ask if it can be computed using only a small amount of entries of the given array. A similar question for matrices (two-dimensional tensors) was asked and positively answered in [S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin, A theory of pseudo-skeleton approximations, Linear Algebra Appl., 261 (1997), pp. 1-21]. In the present paper we extend the positive answer to the case of three-dimensional tensors. More specifically, it is shown that if the tensor admits a good Tucker approximation for some (small) rank $r$, then this approximation can be computed using only $\mathcal{O}(nr)$ entries with $\mathcal{O}(nr^{3})$ complexity. |
---|---|
ISSN: | 0895-4798 1095-7162 |
DOI: | 10.1137/060655894 |