Loading…
Generalized finite algorithms for constructing hermitian matrices with prescribed diagonal and spectrum
In this paper, we present new algorithms that can replace the diagonal entries of a Hermitian matrix by any set of diagonal entries that majorize the original set without altering the eigenvalues of the matrix. They perform this feat by applying a sequence of (N-1) or fewer plane rotations, where N...
Saved in:
Published in: | SIAM journal on matrix analysis and applications 2005-01, Vol.27 (1), p.61-71 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we present new algorithms that can replace the diagonal entries of a Hermitian matrix by any set of diagonal entries that majorize the original set without altering the eigenvalues of the matrix. They perform this feat by applying a sequence of (N-1) or fewer plane rotations, where N is the dimension of the matrix. Both the Bendel--Mickey and the Chan--Li algorithms are special cases of the proposed procedures. Using the fact that a positive semidefinite matrix can always be factored as $\mtx{X^\adj X}$, we also provide more efficient versions of the algorithms that can directly construct factors with specified singular values and column norms. We conclude with some open problems related to the construction of Hermitian matrices with joint diagonal and spectral properties. |
---|---|
ISSN: | 0895-4798 1095-7162 |
DOI: | 10.1137/S0895479803438183 |