Loading…

On the Nonexistence of Entire Solutions to Nonlinear Second Order Elliptic Equations

In this paper, it is shown that there are no global solutions (in all of $R^n $) to nonlinear elliptic equations of the form \[ \sum_{i,j = 1}^n {\frac{\partial }{{\partial x_i }}\left( {a_{ij} (x)\frac{{\partial u}}{{\partial x_i }}} \right)} = f(x,u,{\operatorname{grad}}u)\] if $f(x,u,p) \geqq g(u...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on mathematical analysis 1976-05, Vol.7 (3), p.337-343
Main Authors: Levine, Howard A., Payne, Lawrence E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, it is shown that there are no global solutions (in all of $R^n $) to nonlinear elliptic equations of the form \[ \sum_{i,j = 1}^n {\frac{\partial }{{\partial x_i }}\left( {a_{ij} (x)\frac{{\partial u}}{{\partial x_i }}} \right)} = f(x,u,{\operatorname{grad}}u)\] if $f(x,u,p) \geqq g(u)$, where $g$ is a convex, nonnegative function (nondecreasing if $n > 2$) such that $g^{ - {1 / 2}} $ is integrable near infinity unless $g(u(x)) \equiv 0$.
ISSN:0036-1410
1095-7154
DOI:10.1137/0507027