Loading…

Existence and Asymptotic Behavior of Solutions to Some Inhomogeneous Nonlocal Diffusion Problems

We consider the nonlocal evolution Dirichlet problem $u_t(x,t)=\int_{\Omega}J(\frac{x-y}{g(y)})\frac{u(y,t)}{g(y)^N}dy-u(x,t)$, $x\in\Omega$, $t>0$; $u=0$, $x\in\mathbb{R}^N\setminus\Omega$, $t\ge0$; $u(x,0)=u_0(x)$, $x\in\mathbb{R}^N$; where $\Omega$ is a bounded domain in $\mathbb{R}^N$, $J$ is...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on mathematical analysis 2009-01, Vol.41 (5), p.2136-2164
Main Authors: Cortázar, Carmen, Elgueta, Manuel, García-Melián, Jorge, Martínez, Salomé
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider the nonlocal evolution Dirichlet problem $u_t(x,t)=\int_{\Omega}J(\frac{x-y}{g(y)})\frac{u(y,t)}{g(y)^N}dy-u(x,t)$, $x\in\Omega$, $t>0$; $u=0$, $x\in\mathbb{R}^N\setminus\Omega$, $t\ge0$; $u(x,0)=u_0(x)$, $x\in\mathbb{R}^N$; where $\Omega$ is a bounded domain in $\mathbb{R}^N$, $J$ is a Hölder continuous, nonnegative, compactly supported function with unit integral and $g\in C(\overline{\Omega})$ is assumed to be positive in $\Omega$. We discuss existence, uniqueness, and asymptotic behavior of solutions as $t\to+\infty$. Moreover, we prove the existence of a positive stationary solution when the inequality $g(x)\le\delta(x)$ holds at every point of $\Omega$, where $\delta(x)=\mathrm{dist}(x,\partial\Omega)$. The behavior of positive stationary solutions near the boundary is also analyzed.
ISSN:0036-1410
1095-7154
DOI:10.1137/090751682