Loading…
The Blow-Up Time for Solutions of Nonlinear Heat Equations with Small Diffusion
Consider a nonlinear heat equation $u_t - \varepsilon \Delta u = f(u)$ in a cylinder $\{ x \in \Omega ,t > 0\} $, with , $u$ Vanishing on the lateral boundary and $u = \phi _\varepsilon (x)$ initially $(\phi _\varepsilon \geqq 0)$. Denote by $T_\varepsilon $ the blow-up time for the solution. Asy...
Saved in:
Published in: | SIAM journal on mathematical analysis 1987-05, Vol.18 (3), p.711-721 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Consider a nonlinear heat equation $u_t - \varepsilon \Delta u = f(u)$ in a cylinder $\{ x \in \Omega ,t > 0\} $, with , $u$ Vanishing on the lateral boundary and $u = \phi _\varepsilon (x)$ initially $(\phi _\varepsilon \geqq 0)$. Denote by $T_\varepsilon $ the blow-up time for the solution. Asymptotic estimates are obtained for $T_\varepsilon $ as $\varepsilon \to 0$. |
---|---|
ISSN: | 0036-1410 1095-7154 |
DOI: | 10.1137/0518054 |