Loading…
The number of independent sets in a grid graph
If f(m,n) is the (vertex) independence number of the $m\times n$ grid graph, then we show that the double limit $\eta\eqdef\lim_{m,n\to\infty}f(m,n)^{1\over {mn}}$ exists, thereby refining earlier results of Weber [Rostock. Math. Kolloq., 34 (1988), pp. 28--36] and Engel [Fibonacci Quart.,, 28 (1990...
Saved in:
Published in: | SIAM journal on discrete mathematics 1998-02, Vol.11 (1), p.54-60 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | If f(m,n) is the (vertex) independence number of the $m\times n$ grid graph, then we show that the double limit $\eta\eqdef\lim_{m,n\to\infty}f(m,n)^{1\over {mn}}$ exists, thereby refining earlier results of Weber [Rostock. Math. Kolloq., 34 (1988), pp. 28--36] and Engel [Fibonacci Quart.,, 28 (1990), pp. 72--78]. We establish upper and lower bounds for $\eta$ and {\it prove} that $1.503047782... \le \eta \le 1.5035148\ldots $. Numerical computations suggest that the true value of $\eta$ (the "hard square constant") is around 1.5030480824753323... . |
---|---|
ISSN: | 0895-4801 1095-7146 |
DOI: | 10.1137/S089548019528993X |