Loading…

Dirac structures and boundary control systems associated with skew-symmetric differential operators

Associated with a skew-symmetric linear operator on the spatial domain $[a,b]$ we define a Dirac structure which includes the port variables on the boundary of this spatial domain. This Dirac structure is a subspace of a Hilbert space. Naturally, associated with this Dirac structure is an infinite-d...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on control and optimization 2005-01, Vol.44 (5), p.1864-1892
Main Authors: LE GORREC, Y, ZWART, H, MASCHKE, B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Associated with a skew-symmetric linear operator on the spatial domain $[a,b]$ we define a Dirac structure which includes the port variables on the boundary of this spatial domain. This Dirac structure is a subspace of a Hilbert space. Naturally, associated with this Dirac structure is an infinite-dimensional system. We parameterize the boundary port variables for which the \( C_{0} \)-semigroup associated with this system is contractive or unitary. Furthermore, this parameterization is used to split the boundary port variables into inputs and outputs. Similarly, we define a linear port controlled Hamiltonian system associated with the previously defined Dirac structure and a symmetric positive operator defining the energy of the system. We illustrate this theory on the example of the Timoshenko beam.
ISSN:0363-0129
1095-7138
DOI:10.1137/040611677