Loading…
Dirac structures and boundary control systems associated with skew-symmetric differential operators
Associated with a skew-symmetric linear operator on the spatial domain $[a,b]$ we define a Dirac structure which includes the port variables on the boundary of this spatial domain. This Dirac structure is a subspace of a Hilbert space. Naturally, associated with this Dirac structure is an infinite-d...
Saved in:
Published in: | SIAM journal on control and optimization 2005-01, Vol.44 (5), p.1864-1892 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Associated with a skew-symmetric linear operator on the spatial domain $[a,b]$ we define a Dirac structure which includes the port variables on the boundary of this spatial domain. This Dirac structure is a subspace of a Hilbert space. Naturally, associated with this Dirac structure is an infinite-dimensional system. We parameterize the boundary port variables for which the \( C_{0} \)-semigroup associated with this system is contractive or unitary. Furthermore, this parameterization is used to split the boundary port variables into inputs and outputs. Similarly, we define a linear port controlled Hamiltonian system associated with the previously defined Dirac structure and a symmetric positive operator defining the energy of the system. We illustrate this theory on the example of the Timoshenko beam. |
---|---|
ISSN: | 0363-0129 1095-7138 |
DOI: | 10.1137/040611677 |