Loading…
Proximal minimization methods with generalized Bregman functions
We consider methods for minimizing a convex function f that generate a sequence {xk} by taking xk+1 to be an approximate minimizer of f(x)+Dh(x,xk)/ck, where ck > 0 and Dh is the D-function of a Bregman function h. Extensions are made to B-functions that generalize Bregman functions and cover mor...
Saved in:
Published in: | SIAM journal on control and optimization 1997-07, Vol.35 (4), p.1142-1168 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider methods for minimizing a convex function f that generate a sequence {xk} by taking xk+1 to be an approximate minimizer of f(x)+Dh(x,xk)/ck, where ck > 0 and Dh is the D-function of a Bregman function h. Extensions are made to B-functions that generalize Bregman functions and cover more applications. Convergence is established under criteria amenable to implementation. Applications are made to nonquadratic multiplier methods for nonlinear programs. |
---|---|
ISSN: | 0363-0129 1095-7138 |
DOI: | 10.1137/S0363012995281742 |