Loading…
Poisson Processes and a Bessel Function Integral
The probability of winning a simple game of competing Poisson processes turns out to be equal to the well-known Bessel function integral J(x, y) (cf. Y. L. Luke, Integrals of Bessel Functions, McGraw-Hill, New York, 1962). Several properties of J, some of which seem to be new, follow quite easily fr...
Saved in:
Published in: | SIAM review 1985-03, Vol.27 (1), p.73-77 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The probability of winning a simple game of competing Poisson processes turns out to be equal to the well-known Bessel function integral J(x, y) (cf. Y. L. Luke, Integrals of Bessel Functions, McGraw-Hill, New York, 1962). Several properties of J, some of which seem to be new, follow quite easily from this probabilistic interpretation. The results are applied to the random telegraph process as considered by Kac [Rocky Mountain J. Math., 4 (1974), pp. 497-509] |
---|---|
ISSN: | 0036-1445 1095-7200 |
DOI: | 10.1137/1027004 |