Loading…

Parsimonious Structural Equation Models for Repeated Measures Data, with Application to the Study of Consumer Preferences

Recent research reflects a growing awareness of the value of using structural equation models to analyze repeated measures data. However, such data, particularly in the presence of covariates, often lead to models that either fit the data poorly, are exceedingly general and hard to interpret, or are...

Full description

Saved in:
Bibliographic Details
Published in:Psychometrika 2012-04, Vol.77 (2), p.358-387
Main Authors: Elrod, Terry, Häubl, Gerald, Tipps, Steven W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent research reflects a growing awareness of the value of using structural equation models to analyze repeated measures data. However, such data, particularly in the presence of covariates, often lead to models that either fit the data poorly, are exceedingly general and hard to interpret, or are specified in a manner that is highly data dependent. This article introduces methods for developing parsimonious models for such data. The underlying technology uses reduced-rank representations of the variances, covariances and means of observed and latent variables. The value of this approach, which may be implemented using standard structural equation modeling software, is illustrated in an application study aimed at understanding heterogeneous consumer preferences. In this application, the parsimonious representations characterize systematic relationships among consumer demographics, attitudes and preferences that would otherwise be undetected. The result is a model that is parsimonious, illuminating, and fits the data well, while keeping data dependence to a minimum.
ISSN:0033-3123
1860-0980
DOI:10.1007/s11336-012-9260-x