Loading…
Common features of optimal collagen scaffolds that disrupt wound contraction and enhance regeneration both in peripheral nerves and in skin
Abstract The adult mammal responds to severe injury of most organs spontaneously by wound contraction and scar formation, rather than by regeneration. In severe skin wounds, the ability of porous collagen scaffolds to induce regeneration was found to correlate strongly with a reduction in wound cont...
Saved in:
Published in: | Biomaterials 2012-06, Vol.33 (19), p.4783-4791 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract The adult mammal responds to severe injury of most organs spontaneously by wound contraction and scar formation, rather than by regeneration. In severe skin wounds, the ability of porous collagen scaffolds to induce regeneration was found to correlate strongly with a reduction in wound contraction rate. Here, we present quantitative evidence of a similar positive relationship between the extent of disruption of tissue contraction and quality of peripheral nerve regeneration in transected rat peripheral nerves. Our observations suggest that porous collagen scaffolds enhance regeneration both in injured adult skin and peripheral nerves by disrupting the formation of a contractile cell capsule at the edges of the wound. Preliminary observations made with other injured organs support the hypothesis that capsules or clusters of contractile cells impose a universal mechanical barrier during wound healing which, if disrupted appropriately, enhances the quality of induced regeneration in a wider range of organs. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2012.03.068 |