Loading…
Selective liquid phase oxidation with supported metal nanoparticles
Over the past twenty years there has been intense interest in the design and understanding of catalysis by gold. More recently, it has been observed that alloying gold with a second metal greatly enhances the catalytic efficacy. These supported nanoparticles offer great potential as catalysts for th...
Saved in:
Published in: | Chemical science (Cambridge) 2012-01, Vol.3 (1), p.2-44 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Over the past twenty years there has been intense interest in the design and understanding of catalysis by gold. More recently, it has been observed that alloying gold with a second metal greatly enhances the catalytic efficacy. These supported nanoparticles offer great potential as catalysts for the synthesis of fine chemicals and they are now at the stage where they can contribute to the sustainable development of chemical processes, in particular selective oxidation. A number of factors have contributed to this increased interest; namely, environmental issues promoting the need for more atom efficient processes and the new advances in the synthesis of nanoparticles as well as the characterisation methods available for their study. New catalytic materials obtained by careful control of the morphology of the metal nanoparticles and their use under solvent-free conditions all contribute to the latest developments. Most importantly their use can obviate the need to use stoichiometric oxidants. In this perspective we demonstrate the recent advances in these materials for selective oxidation reactions.
Supported metal nanoparticles offer immense scope as new catalysts for selective oxidation of a broad range of substrates particularly under mild reaction conditions with molecular oxygen. |
---|---|
ISSN: | 2041-6520 2041-6539 |
DOI: | 10.1039/c1sc00524c |