Loading…
A nominally second-order accurate finite volume cell-centered scheme for anisotropic diffusion on two-dimensional unstructured grids
In this paper, we describe a second-order accurate cell-centered finite volume method for solving anisotropic diffusion on two-dimensional unstructured grids. The resulting numerical scheme, named CCLAD (Cell-Centered LAgrangian Diffusion), is characterized by a local stencil and cell-centered unkno...
Saved in:
Published in: | Journal of computational physics 2012-03, Vol.231 (5), p.2259-2299 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we describe a second-order accurate cell-centered finite volume method for solving anisotropic diffusion on two-dimensional unstructured grids. The resulting numerical scheme, named CCLAD (Cell-Centered LAgrangian Diffusion), is characterized by a local stencil and cell-centered unknowns. It is devoted to the resolution of diffusion equation on distorted grids in the context of Lagrangian hydrodynamics wherein a strong coupling occurs between gas dynamics and diffusion. The space discretization relies on the introduction of two half-edge normal fluxes and two half-edge temperatures per cell interface using the partition of each cell into sub-cells. For each cell, the two half-edge normal fluxes attached to a node are expressed in terms of the half-edge temperatures impinging at this node and the cell-centered temperature. This local flux approximation can be derived through the use of either a sub-cell variational formulation or a finite difference approximation, leading to the two variants CCLADS and CCLADNS. The elimination of the half-edge temperatures is performed locally at each node by solving a small linear system which is obtained by enforcing the continuity condition of the normal heat flux across sub-cell interface impinging at the node. The accuracy and the robustness of the present scheme is assessed by means of various numerical test cases. |
---|---|
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/j.jcp.2011.11.029 |