Loading…
Games With Discontinuous Payoffs: A Strengthening of Reny's Existence Theorem
We provide a pure Nash equilibrium existence theorem for games with discontinuous payoffs whose hypotheses are in a number of ways weaker than those of the theorem of Reny (1999). In comparison with Reny's argument, our proof is brief. Our result subsumes a prior existence result of Nishimura a...
Saved in:
Published in: | Econometrica 2011-09, Vol.79 (5), p.1643-1664 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We provide a pure Nash equilibrium existence theorem for games with discontinuous payoffs whose hypotheses are in a number of ways weaker than those of the theorem of Reny (1999). In comparison with Reny's argument, our proof is brief. Our result subsumes a prior existence result of Nishimura and Friedman (1981) that is not covered by his theorem. We use the main result to prove the existence of pure Nash equilibrium in a class of finite games in which agents' pure strategies are subsets of a given set, and in turn use this to prove the existence of stable configurations for games, similar to those used by Schelling (1971, 1972) to study residential segregation, in which agents choose locations. |
---|---|
ISSN: | 0012-9682 1468-0262 |
DOI: | 10.3982/ECTA8949 |