Loading…

THE HEAT-KERNEL MOST-LIKELY-PATH APPROXIMATION

In this article, we derive a new most-likely-path (MLP) approximation for implied volatility in terms of local volatility, based on time-integration of the lowest order term in the heat-kernel expansion. This new approximation formula turns out to be a natural extension of the well-known formula of...

Full description

Saved in:
Bibliographic Details
Published in:International journal of theoretical and applied finance 2012-02, Vol.15 (1), p.1250001-125000118
Main Authors: GATHERAL, JIM, WANG, TAI-HO
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400X-4afd12ccfe38d9f125fbf709ff0da1a0b2f5ad487f46cb89cc4558086ba59bf43
cites cdi_FETCH-LOGICAL-c400X-4afd12ccfe38d9f125fbf709ff0da1a0b2f5ad487f46cb89cc4558086ba59bf43
container_end_page 125000118
container_issue 1
container_start_page 1250001
container_title International journal of theoretical and applied finance
container_volume 15
creator GATHERAL, JIM
WANG, TAI-HO
description In this article, we derive a new most-likely-path (MLP) approximation for implied volatility in terms of local volatility, based on time-integration of the lowest order term in the heat-kernel expansion. This new approximation formula turns out to be a natural extension of the well-known formula of Berestycki, Busca and Florent. Various other MLP approximations have been suggested in the literature involving different choices of most-likely-path; our work fixes a natural definition of the most-likely-path. We confirm the improved performance of our new approximation relative to existing approximations in an explicit computation using a realistic S&P500 local volatility function.
doi_str_mv 10.1142/S021902491250001X
format article
fullrecord <record><control><sourceid>proquest_world</sourceid><recordid>TN_cdi_proquest_miscellaneous_1018857599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1018857599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400X-4afd12ccfe38d9f125fbf709ff0da1a0b2f5ad487f46cb89cc4558086ba59bf43</originalsourceid><addsrcrecordid>eNplkEFrgzAYhsPYYKXrD9jN4y7pvsREk6MUN6W2ltaBO0mMCQi2dqZl7N_P0rFLT9_hfZ6XjxehZwJzQhh93QElEiiThHIAIOUdmpBQ-jjwKb1Hk0uML_kjmjnX1kBk4HMa-BM0L5LYS-KowMt4u44zb5XvCpylyzj7xJuoSLxos9nmZbqKijRfP6EHqzpnZn93ij7e4mKR4Cx_TxdRhjUDKDFTtiFUa2t80Ug7vmVrG4K0FhpFFNTUctUwEVoW6FpIrRnnAkRQKy5ry_wpern2Hof-62zcqdq3TpuuUwfTn11FgAjBQy7liJIrqofeucHY6ji0ezX8jFB1mae6mWd04Op890PXON2aw6m1rf5Xb5VfOoBibQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1018857599</pqid></control><display><type>article</type><title>THE HEAT-KERNEL MOST-LIKELY-PATH APPROXIMATION</title><source>EBSCOhost Business Source Ultimate</source><source>International Bibliography of the Social Sciences (IBSS)</source><creator>GATHERAL, JIM ; WANG, TAI-HO</creator><creatorcontrib>GATHERAL, JIM ; WANG, TAI-HO</creatorcontrib><description>In this article, we derive a new most-likely-path (MLP) approximation for implied volatility in terms of local volatility, based on time-integration of the lowest order term in the heat-kernel expansion. This new approximation formula turns out to be a natural extension of the well-known formula of Berestycki, Busca and Florent. Various other MLP approximations have been suggested in the literature involving different choices of most-likely-path; our work fixes a natural definition of the most-likely-path. We confirm the improved performance of our new approximation relative to existing approximations in an explicit computation using a realistic S&amp;P500 local volatility function.</description><identifier>ISSN: 0219-0249</identifier><identifier>EISSN: 1793-6322</identifier><identifier>DOI: 10.1142/S021902491250001X</identifier><language>eng</language><publisher>World Scientific Publishing Company</publisher><subject>Applied economics ; Heat kernel ; Mathematical analysis ; Most likely path approximation ; Probability ; Statistical models ; Volatility</subject><ispartof>International journal of theoretical and applied finance, 2012-02, Vol.15 (1), p.1250001-125000118</ispartof><rights>2012, World Scientific Publishing Company</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400X-4afd12ccfe38d9f125fbf709ff0da1a0b2f5ad487f46cb89cc4558086ba59bf43</citedby><cites>FETCH-LOGICAL-c400X-4afd12ccfe38d9f125fbf709ff0da1a0b2f5ad487f46cb89cc4558086ba59bf43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,33201</link.rule.ids></links><search><creatorcontrib>GATHERAL, JIM</creatorcontrib><creatorcontrib>WANG, TAI-HO</creatorcontrib><title>THE HEAT-KERNEL MOST-LIKELY-PATH APPROXIMATION</title><title>International journal of theoretical and applied finance</title><description>In this article, we derive a new most-likely-path (MLP) approximation for implied volatility in terms of local volatility, based on time-integration of the lowest order term in the heat-kernel expansion. This new approximation formula turns out to be a natural extension of the well-known formula of Berestycki, Busca and Florent. Various other MLP approximations have been suggested in the literature involving different choices of most-likely-path; our work fixes a natural definition of the most-likely-path. We confirm the improved performance of our new approximation relative to existing approximations in an explicit computation using a realistic S&amp;P500 local volatility function.</description><subject>Applied economics</subject><subject>Heat kernel</subject><subject>Mathematical analysis</subject><subject>Most likely path approximation</subject><subject>Probability</subject><subject>Statistical models</subject><subject>Volatility</subject><issn>0219-0249</issn><issn>1793-6322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNplkEFrgzAYhsPYYKXrD9jN4y7pvsREk6MUN6W2ltaBO0mMCQi2dqZl7N_P0rFLT9_hfZ6XjxehZwJzQhh93QElEiiThHIAIOUdmpBQ-jjwKb1Hk0uML_kjmjnX1kBk4HMa-BM0L5LYS-KowMt4u44zb5XvCpylyzj7xJuoSLxos9nmZbqKijRfP6EHqzpnZn93ij7e4mKR4Cx_TxdRhjUDKDFTtiFUa2t80Ug7vmVrG4K0FhpFFNTUctUwEVoW6FpIrRnnAkRQKy5ry_wpern2Hof-62zcqdq3TpuuUwfTn11FgAjBQy7liJIrqofeucHY6ji0ezX8jFB1mae6mWd04Op890PXON2aw6m1rf5Xb5VfOoBibQ</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>GATHERAL, JIM</creator><creator>WANG, TAI-HO</creator><general>World Scientific Publishing Company</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>201202</creationdate><title>THE HEAT-KERNEL MOST-LIKELY-PATH APPROXIMATION</title><author>GATHERAL, JIM ; WANG, TAI-HO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400X-4afd12ccfe38d9f125fbf709ff0da1a0b2f5ad487f46cb89cc4558086ba59bf43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied economics</topic><topic>Heat kernel</topic><topic>Mathematical analysis</topic><topic>Most likely path approximation</topic><topic>Probability</topic><topic>Statistical models</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GATHERAL, JIM</creatorcontrib><creatorcontrib>WANG, TAI-HO</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>International journal of theoretical and applied finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GATHERAL, JIM</au><au>WANG, TAI-HO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE HEAT-KERNEL MOST-LIKELY-PATH APPROXIMATION</atitle><jtitle>International journal of theoretical and applied finance</jtitle><date>2012-02</date><risdate>2012</risdate><volume>15</volume><issue>1</issue><spage>1250001</spage><epage>125000118</epage><pages>1250001-125000118</pages><issn>0219-0249</issn><eissn>1793-6322</eissn><abstract>In this article, we derive a new most-likely-path (MLP) approximation for implied volatility in terms of local volatility, based on time-integration of the lowest order term in the heat-kernel expansion. This new approximation formula turns out to be a natural extension of the well-known formula of Berestycki, Busca and Florent. Various other MLP approximations have been suggested in the literature involving different choices of most-likely-path; our work fixes a natural definition of the most-likely-path. We confirm the improved performance of our new approximation relative to existing approximations in an explicit computation using a realistic S&amp;P500 local volatility function.</abstract><pub>World Scientific Publishing Company</pub><doi>10.1142/S021902491250001X</doi><tpages>112500108</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0219-0249
ispartof International journal of theoretical and applied finance, 2012-02, Vol.15 (1), p.1250001-125000118
issn 0219-0249
1793-6322
language eng
recordid cdi_proquest_miscellaneous_1018857599
source EBSCOhost Business Source Ultimate; International Bibliography of the Social Sciences (IBSS)
subjects Applied economics
Heat kernel
Mathematical analysis
Most likely path approximation
Probability
Statistical models
Volatility
title THE HEAT-KERNEL MOST-LIKELY-PATH APPROXIMATION
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T08%3A59%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_world&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20HEAT-KERNEL%20MOST-LIKELY-PATH%20APPROXIMATION&rft.jtitle=International%20journal%20of%20theoretical%20and%20applied%20finance&rft.au=GATHERAL,%20JIM&rft.date=2012-02&rft.volume=15&rft.issue=1&rft.spage=1250001&rft.epage=125000118&rft.pages=1250001-125000118&rft.issn=0219-0249&rft.eissn=1793-6322&rft_id=info:doi/10.1142/S021902491250001X&rft_dat=%3Cproquest_world%3E1018857599%3C/proquest_world%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400X-4afd12ccfe38d9f125fbf709ff0da1a0b2f5ad487f46cb89cc4558086ba59bf43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1018857599&rft_id=info:pmid/&rfr_iscdi=true