Loading…

Effect of long-chain monoacrylate on the residual monomer content, swelling and thermomechanical properties of SAP hydrogels

Residual monomer is an important factor, particularly in hygienic materials such as superabsorbent polymer (SAP) hydrogels. Recently, we reported different approaches to minimizing residual monomer content in SAPs. In this paper, the effect of a long-chain monomer, poly(ethylene glycol) methylether...

Full description

Saved in:
Bibliographic Details
Published in:Journal of polymer research 2011-11, Vol.18 (6), p.1863-1870
Main Authors: Kabiri, Kourosh, Hesarian, Sara, Zohuriaan-Mehr, Mohammad-Jalal, Jamshidi, Ahmad, Bouhendi, Hossein, Pourheravi, Mohammad-Reza, Hashemi, Seyd-Ali, Omidian, Hossein, Fatollahi, Soheila
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Residual monomer is an important factor, particularly in hygienic materials such as superabsorbent polymer (SAP) hydrogels. Recently, we reported different approaches to minimizing residual monomer content in SAPs. In this paper, the effect of a long-chain monomer, poly(ethylene glycol) methylether methacrylate (PEG.MEMA), on the residual monomer content of SAP networks of partially neutralized acrylic acid–PEG.MEMA is investigated. The aim of using PEG.MEMA in SAP synthesis was to reduce the glass transition temperature ( T g ) of SAP. As the temperature that is conventionally used to dry SAP (70–110 °C) is lower than the T g of ordinary SAPs, the polymer is in the glassy state during the heating stage. It was assumed that converting SAP from the glassy state to the rubbery state during drying would facilitate the removal of acrylic acid monomer (AA) from the gel, thus reducing the residual monomer content. The results showed that the use of PEG.MEMA led to a reduction in residual AA when the drying temperature was 100 °C. The residual AA was decreased from 169 to 95 ppm when the drying time was increased from 3 to 15 hours at 100 °C. This positive effect of PEG.MEMA on the level of unwanted residual AA became insignificant at a higher drying temperature (140 °C). The effects of PEG.MEMA content on the thermal and mechanical properties (in the dried state) and the rheological properties (in the water-swollen state) of the SAP hydrogels were also investigated. The swelling capacity and rate was studied in relation to the PEG.MEMA content. It was found that a high level of PEG.MEMA restricted both the absorption capacity and the rate of water absorption.
ISSN:1022-9760
1572-8935
DOI:10.1007/s10965-011-9593-7