Loading…

A new coupled fluid–structure modeling methodology for running ductile fracture

► Development of coupled fluid–structure modeling methodology for running ductile fracture. ► Fracture propagation has been modeled using the finite-element method. ► The finite-volume method has been employed to simulate the fluid flow inside the pipe. ► Choked-flow theory was used for calculating...

Full description

Saved in:
Bibliographic Details
Published in:Computers & structures 2012-03, Vol.94-95, p.13-21
Main Authors: Nordhagen, H.O., Kragset, S., Berstad, T., Morin, A., Dørum, C., Munkejord, S.T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:► Development of coupled fluid–structure modeling methodology for running ductile fracture. ► Fracture propagation has been modeled using the finite-element method. ► The finite-volume method has been employed to simulate the fluid flow inside the pipe. ► Choked-flow theory was used for calculating the flow through the pipe crack. ► A comparison to full-scale tests has been done, giving very promising results. A coupled fluid–structure modeling methodology for running ductile fracture in pressurized pipelines has been developed. The pipe material and fracture propagation have been modeled using the finite-element method with a ductile fracture criterion. The finite-volume method has been employed to simulate the fluid flow inside the pipe, and the resulting pressure profile was applied as a load in the finite-element model. Choked-flow theory was used for calculating the flow through the pipe crack. A comparison to full-scale tests of running ductile fracture in steel pipelines pressurized with hydrogen and with methane has been done, and very promising results have been obtained.
ISSN:0045-7949
1879-2243
DOI:10.1016/j.compstruc.2012.01.004