Loading…

Monte Carlo methods for mean-risk optimization and portfolio selection

Stochastic programming is a well-known instrument to model many risk management problems in finance. In this paper we consider a stochastic programming model where the objective function is the variance of a random function and the constraint function is the expected value of the random function. In...

Full description

Saved in:
Bibliographic Details
Published in:Computational management science 2012-02, Vol.9 (1), p.3-29
Main Authors: Xu, Huifu, Zhang, Dali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Stochastic programming is a well-known instrument to model many risk management problems in finance. In this paper we consider a stochastic programming model where the objective function is the variance of a random function and the constraint function is the expected value of the random function. Instead of using popular scenario tree methods, we apply the well-known sample average approximation (SAA) method to solve it. An advantage of SAA is that it can be implemented without knowing the distribution of the random data. We investigate the asymptotic properties of statistical estimators obtained from the SAA problem including examining the rate of convergence of optimal solutions of the SAA problem as sample size increases. By using the classical penalty function technique and recent results on uniform exponential convergence of sample average random functions, we show that under some mild conditions the statistical estimator of the optimal solution converges to its true counterpart at an exponential rate. We apply the proposed model and the numerical method to a portfolio management problem and present some numerical results.
ISSN:1619-697X
1619-6988
DOI:10.1007/s10287-010-0123-6