Loading…

Deforming composite grids for solving fluid structure problems

We describe a mixed Eulerian–Lagrangian approach for solving fluid–structure interaction (FSI) problems. The technique, which uses deforming composite grids (DCG), is applied to FSI problems that couple high speed compressible flow with elastic solids. The fluid and solid domains are discretized wit...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2012-05, Vol.231 (9), p.3518-3547
Main Authors: Banks, Jeffrey W., Henshaw, William D., Schwendeman, Donald W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We describe a mixed Eulerian–Lagrangian approach for solving fluid–structure interaction (FSI) problems. The technique, which uses deforming composite grids (DCG), is applied to FSI problems that couple high speed compressible flow with elastic solids. The fluid and solid domains are discretized with composite overlapping grids. Curvilinear grids are aligned with each interface and these grids deform as the interface evolves. The majority of grid points in the fluid domain generally belong to background Cartesian grids which do not move during a simulation. The FSI-DCG approach allows large displacements of the interfaces while retaining high quality grids. Efficiency is obtained through the use of structured grids and Cartesian grids. The governing equations in the fluid and solid domains are evolved in a partitioned approach. We solve the compressible Euler equations in the fluid domains using a high-order Godunov finite-volume scheme. We solve the linear elastodynamic equations in the solid domains using a second-order upwind scheme. We develop interface approximations based on the solution of a fluid–solid Riemann problem that results in a stable scheme even for the difficult case of light solids coupled to heavy fluids. The FSI-DCG approach is verified for three problems with known solutions, an elastic-piston problem, the superseismic shock problem and a deforming diffuser. In addition, a self convergence study is performed for an elastic shock hitting a fluid filled cavity. The overall FSI-DCG scheme is shown to be second-order accurate in the max-norm for smooth solutions, and robust and stable for problems with discontinuous solutions for a wide range of constitutive parameters.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2011.12.034