Loading…

Role of Welding Parameters Using the Flux Cored Arc Welding Process of Low Alloy Steels on Bead Geometry and Mechanical Properties

Welding parameters have direct effects on the bead geometry, microstructure, and mechanical properties of low alloy steels. A series of experiments have been carried out to examine some of these parameters using the flux cored arc welding process (FCAW). In this article, an experimental study was co...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials engineering and performance 2012-04, Vol.21 (4), p.540-547
Main Authors: Aloraier, A., Almazrouee, A., Shehata, T., Price, John W. H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Welding parameters have direct effects on the bead geometry, microstructure, and mechanical properties of low alloy steels. A series of experiments have been carried out to examine some of these parameters using the flux cored arc welding process (FCAW). In this article, an experimental study was conducted to investigate the influence of welding parameters in FCAW process particularly welding voltage and travel speed on weld bead dimensions. The study also includes the effects of bead overlap and deposition sequence on the parent material and the heat-affected zone (HAZ) properties. It was found that an increase in the welding voltage leads to an increase in the weld bead width, and the increase in the welding traverse speed leads to a decrease in the weld bead width. When studying the bead overlap percentages, it was found that the 50% bead overlap can be considered to be practically a better option than the higher percentages of bead overlap (i.e., 70-90%). The experimental investigation of studying the deposition sequence showed that there were no significant differences in the microstructure, hardness, and the size of the refined HAZ between the two proposed deposition sequences. However, a significant improvement in the microstructure and the size of the refined HAZ, and a reduction in the hardness were achieved after depositing the second welding bead, irrespective of the depositing sequence.
ISSN:1059-9495
1544-1024
DOI:10.1007/s11665-011-9948-6