Loading…

Multiscale approximation for functions in arbitrary Sobolev spaces by scaled radial basis functions on the unit sphere

In this paper, we prove convergence results for multiscale approximation using compactly supported radial basis functions restricted to the unit sphere, for target functions outside the reproducing kernel Hilbert space of the employed kernel.

Saved in:
Bibliographic Details
Published in:Applied and computational harmonic analysis 2012-05, Vol.32 (3), p.401-412
Main Authors: Le Gia, Q.T., Sloan, I.H., Wendland, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we prove convergence results for multiscale approximation using compactly supported radial basis functions restricted to the unit sphere, for target functions outside the reproducing kernel Hilbert space of the employed kernel.
ISSN:1063-5203
1096-603X
DOI:10.1016/j.acha.2011.07.007