Loading…

Electrochemical study of La0.6Sr0.4Co0.8Fe0.2O3 during oxygen evolution reaction

In this paper, oxygen evolution reaction (OER) mechanism in La0.6Sr0.4Co0.8Fe0.2O3 was investigated in KOH solution by electrochemical impedance spectroscopy (EIS) and voltammetric measurements. The Tafel slopes and reaction orders evaluated in this paper are consistent with the B. O’Grady’s Path fo...

Full description

Saved in:
Bibliographic Details
Published in:International journal of hydrogen energy 2012-04, Vol.37 (8), p.6400-6406
Main Authors: Garcia, Eric M., Tarôco, Hosane A., Matencio, Tulio, Domingues, Rosana Z., dos Santos, Jacqueline A.F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, oxygen evolution reaction (OER) mechanism in La0.6Sr0.4Co0.8Fe0.2O3 was investigated in KOH solution by electrochemical impedance spectroscopy (EIS) and voltammetric measurements. The Tafel slopes and reaction orders evaluated in this paper are consistent with the B. O’Grady’s Path for oxygen evolution on oxides. The activation energy for OER in La0.6Sr0.4Co0.8Fe0.2O3 was 28.3 kJ mol−1. The obtained apparent porosity of La0.6Sr0.4Co0.8Fe0.2O3 electrode is 48% and the roughness factor is around 1.6 × 104. The polarization resistance of La0.6Sr0.4Co0.8Fe0.2O3 is much low compared with other similar oxides. This can be due the high roughness and high porosity in addition to the low active energy for the process.
ISSN:0360-3199
1879-3487
DOI:10.1016/j.ijhydene.2012.01.058