Loading…
Monthly lunar declination extremes' influence on tropospheric circulation patterns
Short‐term tidal variations occurring every 27.3 days from southern (negative) to northern (positive) maximum lunar declinations (MLDs), and back to southern declination of the moon have been overlooked in weather studies. These short‐term MLD variations' significance is that when lunar declina...
Saved in:
Published in: | Journal of Geophysical Research: Atmospheres 2011-12, Vol.116 (D23), p.n/a |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Short‐term tidal variations occurring every 27.3 days from southern (negative) to northern (positive) maximum lunar declinations (MLDs), and back to southern declination of the moon have been overlooked in weather studies. These short‐term MLD variations' significance is that when lunar declination is greatest, tidal forces operating on the high latitudes of both hemispheres are maximized. We find that such tidal forces deform the high latitude Rossby longwaves. Using the NCEP/NCAR reanalysis data set, we identify that the 27.3 day MLD cycle's influence on circulation is greatest in the upper troposphere of both hemispheres' high latitudes. The effect is distinctly regional with high impact over central North America and the British Isles. Through this lunar variation, midlatitude weather forecasting for two‐week forecast periods may be significantly improved.
Key Points
Monthly lunar declination deform Rossby longwaves
The deformation signal is distinctly regional and high latitude
A case study of the Great Storm of 1987 demonstrates effect |
---|---|
ISSN: | 0148-0227 2169-897X 2156-2202 2169-8996 |
DOI: | 10.1029/2011JD016598 |