Loading…
Estimation of forest harvesting-induced stream temperature changes and bioenergetic consequences for cutthroat trout in a coastal stream in British Columbia, Canada
Data from a paired-catchment study in south coastal British Columbia, Canada, were analyzed to assess the thermal effects of clearcut harvesting with no riparian buffer on a fish-bearing headwater stream. The approach used time series of daily mean water temperatures for East Creek (control) and A C...
Saved in:
Published in: | Aquatic sciences 2012-07, Vol.74 (3), p.427-441 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Data from a paired-catchment study in south coastal British Columbia, Canada, were analyzed to assess the thermal effects of clearcut harvesting with no riparian buffer on a fish-bearing headwater stream. The approach used time series of daily mean water temperatures for East Creek (control) and A Creek (treatment), both before and after harvest. Statistical models were developed to predict (a) what the temperatures would have been in the post-harvest period had harvesting not occurred, and (b) what temperatures would have been in the pre-harvest period had harvesting already occurred. The Wisconsin Bioenergetics Model was used to simulate growth of coastal cutthroat trout (
Oncorhynchus clarki clarki
) for the first year following fry emergence using the predicted and observed stream temperatures to generate scenarios representing with-harvest and no-harvest thermal regimes. A Monte Carlo approach was used to quantify the effects of uncertainty associated with the regression models on predicted stream temperature and trout growth. Summer daily mean temperatures in the with-harvest scenario were up to
higher than those for the no-harvest scenario. Harvesting-induced warming reduced growth rates during summer, but increased growth rates during autumn and spring. In the with-harvest scenario, trout were 0.2–2.0 g (absolute weight) smaller throughout the winter period than in the no-harvest scenario. However, the bioenergetic simulations suggest that trout growth may be more sensitive to potential changes in food supply following harvesting than to direct impacts of stream temperature changes. |
---|---|
ISSN: | 1015-1621 1420-9055 |
DOI: | 10.1007/s00027-011-0238-z |