Loading…
Birth, death and subfunctionalization in the Arabidopsis genome
Arabidopsis thaliana is now a model system, not just for plant biology but also for comparative genomics. The completion of the sequences of two closely related species, Arabidopsis lyrata and Brassica rapa, is complemented by genomic comparisons among A. thaliana accessions and mutation accumulatio...
Saved in:
Published in: | Trends in plant science 2012-04, Vol.17 (4), p.204-212 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Arabidopsis thaliana is now a model system, not just for plant biology but also for comparative genomics. The completion of the sequences of two closely related species, Arabidopsis lyrata and Brassica rapa, is complemented by genomic comparisons among A. thaliana accessions and mutation accumulation lines. Together these genomic data document the birth of new genes via gene duplication, transposon exaptation and de novo formation of new genes from noncoding sequence. Most novel loci exhibit low expression, and are undergoing pseudogenization or subfunctionalization. Comparatively, A. thaliana has lost large amounts of sequence through deletion, particularly of transposable elements. Intraspecific genomic variation indicates high rates of deletion mutations and deletion polymorphisms across accessions, shedding light on the history of Arabidopsis genome architecture. |
---|---|
ISSN: | 1360-1385 1878-4372 |
DOI: | 10.1016/j.tplants.2012.01.006 |