Loading…
Uncorrelated component analysis for blind source separation
The uncorrelated component analysis (UCA) of a stationary random vector process consists of searching for a linear transformation that minimizes the temporal correlation between its components. Through a general analysis we show that under practically reasonable and mild conditions UCA is a solution...
Saved in:
Published in: | Circuits, systems, and signal processing systems, and signal processing, 1999-01, Vol.18 (3), p.225-239 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The uncorrelated component analysis (UCA) of a stationary random vector process consists of searching for a linear transformation that minimizes the temporal correlation between its components. Through a general analysis we show that under practically reasonable and mild conditions UCA is a solution for blind source separation. The theorems proposed in this paper for UCA provide useful insights for developing practical algorithms. UCA explores the temporal information of the signals, whereas independent component analysis (ICA) explores the spatial information; thus UCA can be applied for source separation in some cases where ICA cannot. For blind source separation, combining ICA and UCA may give improved performance because more information can be utilized. The concept of single UCA (SUCA) is also proposed, which leads to sequential source separation.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0278-081X 1531-5878 |
DOI: | 10.1007/BF01225696 |