Loading…

Applications of Ellipsoidal Approximations to Polyhedral Sets in Power System Optimization

The paper presents a computational method that approximates feasible sets specified by linear or convex inequalities. This numerically efficient approach to power system optimization is based on computational geometry of multidimensional ellipsoids and is potentially applicable to problems with high...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power systems 2008-08, Vol.23 (3), p.956-965
Main Authors: Saric, A.T., Stankovic, A.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The paper presents a computational method that approximates feasible sets specified by linear or convex inequalities. This numerically efficient approach to power system optimization is based on computational geometry of multidimensional ellipsoids and is potentially applicable to problems with high dimensions, as it builds on recent advances in convex optimization. In an important application, it provides ranges in which nodal (generator) injections can vary without violating operational constraints in security analysis. The model is applied to two important problems in deregulated power systems: optimal economic dispatch (OED) and calculation of locational marginal prices (LMPs) in a day-ahead power market. Optimization problem with convex (ellipsoid-based) constraints is solved by a linear matrix inequality (LMI)-based procedure. The method is verified on the benchmark example with 68 buses, 16 generators, and 86 lines.
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2008.926435