Loading…
Histamine Stimulates Neurogenesis in the Rodent Subventricular Zone
Neural stem/progenitor cells present in the subventricular zone (SVZ) are a potential source of repairing cells after injury. Therefore, the identification of novel players that modulate neural stem cells differentiation can have a huge impact in stem cell‐based therapies. Herein, we describe a uniq...
Saved in:
Published in: | Stem cells (Dayton, Ohio) Ohio), 2012-04, Vol.30 (4), p.773-784 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Neural stem/progenitor cells present in the subventricular zone (SVZ) are a potential source of repairing cells after injury. Therefore, the identification of novel players that modulate neural stem cells differentiation can have a huge impact in stem cell‐based therapies. Herein, we describe a unique role of histamine in inducing functional neuronal differentiation from cultured mouse SVZ stem/progenitor cells. This proneurogenic effect depends on histamine 1 receptor activation and involves epigenetic modifications and increased expression of Mash1, Dlx2, and Ngn1 genes. Biocompatible poly (lactic‐co‐glycolic acid) microparticles, engineered to release histamine in a controlled and prolonged manner, also triggered robust neuronal differentiation in vitro. Preconditioning with histamine‐loaded microparticles facilitated neuronal differentiation of SVZ‐GFP cells grafted in hippocampal slices and in in vivo rodent brain. We propose that neuronal commitment triggered by histamine per se or released from biomaterial‐derived vehicles may represent a new tool for brain repair strategies. STEM CELLS 2012; 30:773–784 |
---|---|
ISSN: | 1066-5099 1549-4918 |
DOI: | 10.1002/stem.1042 |