Loading…
Synthesis and evaluation of hybrid drugs for a potential HIV/AIDS-malaria combination therapy
Malaria and HIV are among the most important global health problems of our time and together are responsible for approximately 3 million deaths annually. These two diseases overlap in many regions of the world including sub-Saharan Africa, Southeast Asia and South America, leading to a higher risk o...
Saved in:
Published in: | Bioorganic & medicinal chemistry 2012-09, Vol.20 (17), p.5277-5289 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Malaria and HIV are among the most important global health problems of our time and together are responsible for approximately 3 million deaths annually. These two diseases overlap in many regions of the world including sub-Saharan Africa, Southeast Asia and South America, leading to a higher risk of co-infection. In this study, we generated and characterized hybrid molecules to target Plasmodium falciparum and HIV simultaneously for a potential HIV/malaria combination therapy. Hybrid molecules were synthesized by the covalent fusion of azidothymidine (AZT) with dihydroartemisinin (DHA), a tetraoxane or a 4-aminoquinoline derivative; and the small library was tested for antiviral and antimalarial activity. Our data suggests that compound 7 is the most potent molecule in vitro, with antiplasmodial activity comparable to that of DHA (IC50=26nM, SI>3000), a moderate activity against HIV (IC50=2.9μM; SI>35) and not toxic to HeLa cells at concentrations used in the assay (CC50>100μM). Pharmacokinetics studies further revealed that compound 7 is metabolically unstable and is cleaved via O-dealkylation. These studies account for the lack of in vivo efficacy of compound 7 against the CQ-sensitive Plasmodium berghei N strain in mice, when administered orally at 20mg/kg. |
---|---|
ISSN: | 0968-0896 1464-3391 |
DOI: | 10.1016/j.bmc.2012.06.038 |