Loading…

Contribution of calpains to myocardial ischaemia/reperfusion injury

Loss of calcium (Ca(2+)) homeostasis contributes through different mechanisms to cell death occurring during the first minutes of reperfusion. One of them is an unregulated activation of a variety of Ca(2+)-dependent enzymes, including the non-lysosomal cysteine proteases known as calpains. This rev...

Full description

Saved in:
Bibliographic Details
Published in:Cardiovascular research 2012-10, Vol.96 (1), p.23-31
Main Authors: Inserte, Javier, Hernando, Victor, Garcia-Dorado, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Loss of calcium (Ca(2+)) homeostasis contributes through different mechanisms to cell death occurring during the first minutes of reperfusion. One of them is an unregulated activation of a variety of Ca(2+)-dependent enzymes, including the non-lysosomal cysteine proteases known as calpains. This review analyses the involvement of the calpain family in reperfusion-induced cardiomyocyte death. Calpains remain inactive before reperfusion due to the acidic pHi and increased ionic strength in the ischaemic myocardium. However, inappropriate calpain activation occurs during myocardial reperfusion, and subsequent proteolysis of a wide variety of proteins contributes to the development of contractile dysfunction and necrotic cell death by different mechanisms, including increased membrane fragility, further impairment of Na(+) and Ca(2+) handling, and mitochondrial dysfunction. Recent studies demonstrating that calpain inhibition contributes to the cardioprotective effects of preconditioning and postconditioning, and the beneficial effects obtained with new and more selective calpain inhibitors added at the onset of reperfusion, point to the potential cardioprotective value of therapeutic strategies designed to prevent calpain activation.
ISSN:0008-6363
1755-3245
DOI:10.1093/cvr/cvs232