Loading…
Dynamic stabilization of the optical resonances of single nitrogen-vacancy centers in diamond
We report electrical tuning by the Stark effect of the excited-state structure of single nitrogen-vacancy (NV) centers located ≲100 nm from the diamond surface. The zero-phonon line (ZPL) emission frequency is controllably varied over a range of 300 GHz. Using high-resolution emission spectroscopy,...
Saved in:
Published in: | Physical review letters 2012-05, Vol.108 (20), p.206401-206401, Article 206401 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report electrical tuning by the Stark effect of the excited-state structure of single nitrogen-vacancy (NV) centers located ≲100 nm from the diamond surface. The zero-phonon line (ZPL) emission frequency is controllably varied over a range of 300 GHz. Using high-resolution emission spectroscopy, we observe electrical tuning of the strengths of both cycling and spin-altering transitions. Under resonant excitation, we apply dynamic feedback to stabilize the ZPL frequency. The transition is locked over several minutes and drifts of the peak position on timescales ≳100 ms are reduced to a fraction of the single-scan linewidth, with standard deviation as low as 16 MHz (obtained for an NV in bulk, ultrapure diamond). These techniques should improve the entanglement success probability in quantum communications protocols. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.108.206401 |