Loading…

Three-Dimensional Electrospun Poly(Lactide-Co-ɛ-Caprolactone) for Small-Diameter Vascular Grafts

Nanofibers have been applied to tissue engineering scaffolds because fiber diameters are of the same scale as the physical structure of protein fibrils in the native extracellular matrix. In this study, we utilized cell matrix engineering combined with cell sheet matrix and electrospinning technolog...

Full description

Saved in:
Bibliographic Details
Published in:Tissue engineering. Part A 2012-08, Vol.18 (15-16), p.168-1616
Main Authors: Mun, Cho Hay, Jung, Youngmee, Kim, Sang-Heon, Lee, Sun-Hee, Kim, Hee Chan, Kwon, Il Keun, Kim, Soo Hyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c458t-eb9df8dcd2d9296ffef82ebbb49fa20a4d77b4dd5f37c9d348aef4456f13579c3
cites cdi_FETCH-LOGICAL-c458t-eb9df8dcd2d9296ffef82ebbb49fa20a4d77b4dd5f37c9d348aef4456f13579c3
container_end_page 1616
container_issue 15-16
container_start_page 168
container_title Tissue engineering. Part A
container_volume 18
creator Mun, Cho Hay
Jung, Youngmee
Kim, Sang-Heon
Lee, Sun-Hee
Kim, Hee Chan
Kwon, Il Keun
Kim, Soo Hyun
description Nanofibers have been applied to tissue engineering scaffolds because fiber diameters are of the same scale as the physical structure of protein fibrils in the native extracellular matrix. In this study, we utilized cell matrix engineering combined with cell sheet matrix and electrospinning technologies. We studied small-diameter vascular grafts in vitro by seeding smooth muscle cells onto electrospun poly(lactide-co-ɛ-caprolactone) (PLCL) scaffolds, culturing and constructing a three-dimensional network. The vascular grafts constructed using cell matrix engineering were similar to the native vessels in their mechanical properties, such as tensile strength, tensile strain, and e-modulus. Also, they had a self-sealing property more improved than GORE-TEX because PLCL has compatible elasticity. Small-diameter vascular grafts constructed using matrix engineering have the potential to be suitable for vascular grafts.
doi_str_mv 10.1089/ten.tea.2011.0695
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1093456250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1034199153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-eb9df8dcd2d9296ffef82ebbb49fa20a4d77b4dd5f37c9d348aef4456f13579c3</originalsourceid><addsrcrecordid>eNqNkc9qFTEUh4MotlYfwI0MuKmLuebvZLKU21qFCwpWcTecSU5wSmZyTTKLPotP5FuZ661duOoiJBy-8yP8PkJeMrphtDdvCy6bgrDhlLEN7Yx6RE6ZEboVQn1_fP-W7IQ8y_mG0o52Wj8lJ5zLjmsuTglc_0iI7cU045KnuEBoLgPakmLer0vzOYbb8x3YMjlst7H9_avdwj7FUEdxwTeNj6n5MkMINQJmLJiab5DtGiA1Vwl8yc_JEw8h44u7-4x8fX95vf3Q7j5dfdy-27VWqr60OBrne2cdd4abznv0PcdxHKXxwClIp_UonVNeaGuckD2gl1J1ngmljRVn5PyYW7_3c8VchnnKFkOABeOaB0aNqDhX9AFo7cwYpkRFX_-H3sQ11Zr-Up3qe2F4pdiRsrW3nNAP-zTNkG4rNBxUDVVVPTAcVA0HVXXn1V3yOs7o7jf-uamAPgKHMSxLmHDEVB4Q_QfvnKST</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1036588392</pqid></control><display><type>article</type><title>Three-Dimensional Electrospun Poly(Lactide-Co-ɛ-Caprolactone) for Small-Diameter Vascular Grafts</title><source>Mary Ann Liebert Online Subscription</source><creator>Mun, Cho Hay ; Jung, Youngmee ; Kim, Sang-Heon ; Lee, Sun-Hee ; Kim, Hee Chan ; Kwon, Il Keun ; Kim, Soo Hyun</creator><creatorcontrib>Mun, Cho Hay ; Jung, Youngmee ; Kim, Sang-Heon ; Lee, Sun-Hee ; Kim, Hee Chan ; Kwon, Il Keun ; Kim, Soo Hyun</creatorcontrib><description>Nanofibers have been applied to tissue engineering scaffolds because fiber diameters are of the same scale as the physical structure of protein fibrils in the native extracellular matrix. In this study, we utilized cell matrix engineering combined with cell sheet matrix and electrospinning technologies. We studied small-diameter vascular grafts in vitro by seeding smooth muscle cells onto electrospun poly(lactide-co-ɛ-caprolactone) (PLCL) scaffolds, culturing and constructing a three-dimensional network. The vascular grafts constructed using cell matrix engineering were similar to the native vessels in their mechanical properties, such as tensile strength, tensile strain, and e-modulus. Also, they had a self-sealing property more improved than GORE-TEX because PLCL has compatible elasticity. Small-diameter vascular grafts constructed using matrix engineering have the potential to be suitable for vascular grafts.</description><identifier>ISSN: 1937-3341</identifier><identifier>EISSN: 1937-335X</identifier><identifier>DOI: 10.1089/ten.tea.2011.0695</identifier><identifier>PMID: 22462723</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Animals ; Blood Vessel Prosthesis ; Blood Vessels - anatomy &amp; histology ; Blood Vessels - ultrastructure ; Cardiovascular disease ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; Cells, Cultured ; DNA - metabolism ; Extracellular matrix ; Fibrils ; Male ; Materials Testing ; Mechanical properties ; Myocytes, Smooth Muscle - cytology ; Myocytes, Smooth Muscle - drug effects ; Myocytes, Smooth Muscle - metabolism ; Nanomaterials ; Original Articles ; Phospholipase C ; Polyesters - pharmacology ; Protein structure ; Rabbits ; scaffolds ; Smooth muscle ; Tensile strength ; Tensile Strength - drug effects ; Tissue engineering ; Tissue Engineering - methods</subject><ispartof>Tissue engineering. Part A, 2012-08, Vol.18 (15-16), p.168-1616</ispartof><rights>2012, Mary Ann Liebert, Inc.</rights><rights>(©) Copyright 2012, Mary Ann Liebert, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-eb9df8dcd2d9296ffef82ebbb49fa20a4d77b4dd5f37c9d348aef4456f13579c3</citedby><cites>FETCH-LOGICAL-c458t-eb9df8dcd2d9296ffef82ebbb49fa20a4d77b4dd5f37c9d348aef4456f13579c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.liebertpub.com/doi/epdf/10.1089/ten.tea.2011.0695$$EPDF$$P50$$Gmaryannliebert$$H</linktopdf><linktohtml>$$Uhttps://www.liebertpub.com/doi/full/10.1089/ten.tea.2011.0695$$EHTML$$P50$$Gmaryannliebert$$H</linktohtml><link.rule.ids>314,780,784,3042,21723,27924,27925,55291,55303</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22462723$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mun, Cho Hay</creatorcontrib><creatorcontrib>Jung, Youngmee</creatorcontrib><creatorcontrib>Kim, Sang-Heon</creatorcontrib><creatorcontrib>Lee, Sun-Hee</creatorcontrib><creatorcontrib>Kim, Hee Chan</creatorcontrib><creatorcontrib>Kwon, Il Keun</creatorcontrib><creatorcontrib>Kim, Soo Hyun</creatorcontrib><title>Three-Dimensional Electrospun Poly(Lactide-Co-ɛ-Caprolactone) for Small-Diameter Vascular Grafts</title><title>Tissue engineering. Part A</title><addtitle>Tissue Eng Part A</addtitle><description>Nanofibers have been applied to tissue engineering scaffolds because fiber diameters are of the same scale as the physical structure of protein fibrils in the native extracellular matrix. In this study, we utilized cell matrix engineering combined with cell sheet matrix and electrospinning technologies. We studied small-diameter vascular grafts in vitro by seeding smooth muscle cells onto electrospun poly(lactide-co-ɛ-caprolactone) (PLCL) scaffolds, culturing and constructing a three-dimensional network. The vascular grafts constructed using cell matrix engineering were similar to the native vessels in their mechanical properties, such as tensile strength, tensile strain, and e-modulus. Also, they had a self-sealing property more improved than GORE-TEX because PLCL has compatible elasticity. Small-diameter vascular grafts constructed using matrix engineering have the potential to be suitable for vascular grafts.</description><subject>Animals</subject><subject>Blood Vessel Prosthesis</subject><subject>Blood Vessels - anatomy &amp; histology</subject><subject>Blood Vessels - ultrastructure</subject><subject>Cardiovascular disease</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Cells, Cultured</subject><subject>DNA - metabolism</subject><subject>Extracellular matrix</subject><subject>Fibrils</subject><subject>Male</subject><subject>Materials Testing</subject><subject>Mechanical properties</subject><subject>Myocytes, Smooth Muscle - cytology</subject><subject>Myocytes, Smooth Muscle - drug effects</subject><subject>Myocytes, Smooth Muscle - metabolism</subject><subject>Nanomaterials</subject><subject>Original Articles</subject><subject>Phospholipase C</subject><subject>Polyesters - pharmacology</subject><subject>Protein structure</subject><subject>Rabbits</subject><subject>scaffolds</subject><subject>Smooth muscle</subject><subject>Tensile strength</subject><subject>Tensile Strength - drug effects</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><issn>1937-3341</issn><issn>1937-335X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkc9qFTEUh4MotlYfwI0MuKmLuebvZLKU21qFCwpWcTecSU5wSmZyTTKLPotP5FuZ661duOoiJBy-8yP8PkJeMrphtDdvCy6bgrDhlLEN7Yx6RE6ZEboVQn1_fP-W7IQ8y_mG0o52Wj8lJ5zLjmsuTglc_0iI7cU045KnuEBoLgPakmLer0vzOYbb8x3YMjlst7H9_avdwj7FUEdxwTeNj6n5MkMINQJmLJiab5DtGiA1Vwl8yc_JEw8h44u7-4x8fX95vf3Q7j5dfdy-27VWqr60OBrne2cdd4abznv0PcdxHKXxwClIp_UonVNeaGuckD2gl1J1ngmljRVn5PyYW7_3c8VchnnKFkOABeOaB0aNqDhX9AFo7cwYpkRFX_-H3sQ11Zr-Up3qe2F4pdiRsrW3nNAP-zTNkG4rNBxUDVVVPTAcVA0HVXXn1V3yOs7o7jf-uamAPgKHMSxLmHDEVB4Q_QfvnKST</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Mun, Cho Hay</creator><creator>Jung, Youngmee</creator><creator>Kim, Sang-Heon</creator><creator>Lee, Sun-Hee</creator><creator>Kim, Hee Chan</creator><creator>Kwon, Il Keun</creator><creator>Kim, Soo Hyun</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20120801</creationdate><title>Three-Dimensional Electrospun Poly(Lactide-Co-ɛ-Caprolactone) for Small-Diameter Vascular Grafts</title><author>Mun, Cho Hay ; Jung, Youngmee ; Kim, Sang-Heon ; Lee, Sun-Hee ; Kim, Hee Chan ; Kwon, Il Keun ; Kim, Soo Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-eb9df8dcd2d9296ffef82ebbb49fa20a4d77b4dd5f37c9d348aef4456f13579c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Blood Vessel Prosthesis</topic><topic>Blood Vessels - anatomy &amp; histology</topic><topic>Blood Vessels - ultrastructure</topic><topic>Cardiovascular disease</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Cells, Cultured</topic><topic>DNA - metabolism</topic><topic>Extracellular matrix</topic><topic>Fibrils</topic><topic>Male</topic><topic>Materials Testing</topic><topic>Mechanical properties</topic><topic>Myocytes, Smooth Muscle - cytology</topic><topic>Myocytes, Smooth Muscle - drug effects</topic><topic>Myocytes, Smooth Muscle - metabolism</topic><topic>Nanomaterials</topic><topic>Original Articles</topic><topic>Phospholipase C</topic><topic>Polyesters - pharmacology</topic><topic>Protein structure</topic><topic>Rabbits</topic><topic>scaffolds</topic><topic>Smooth muscle</topic><topic>Tensile strength</topic><topic>Tensile Strength - drug effects</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mun, Cho Hay</creatorcontrib><creatorcontrib>Jung, Youngmee</creatorcontrib><creatorcontrib>Kim, Sang-Heon</creatorcontrib><creatorcontrib>Lee, Sun-Hee</creatorcontrib><creatorcontrib>Kim, Hee Chan</creatorcontrib><creatorcontrib>Kwon, Il Keun</creatorcontrib><creatorcontrib>Kim, Soo Hyun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Tissue engineering. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mun, Cho Hay</au><au>Jung, Youngmee</au><au>Kim, Sang-Heon</au><au>Lee, Sun-Hee</au><au>Kim, Hee Chan</au><au>Kwon, Il Keun</au><au>Kim, Soo Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Dimensional Electrospun Poly(Lactide-Co-ɛ-Caprolactone) for Small-Diameter Vascular Grafts</atitle><jtitle>Tissue engineering. Part A</jtitle><addtitle>Tissue Eng Part A</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>18</volume><issue>15-16</issue><spage>168</spage><epage>1616</epage><pages>168-1616</pages><issn>1937-3341</issn><eissn>1937-335X</eissn><abstract>Nanofibers have been applied to tissue engineering scaffolds because fiber diameters are of the same scale as the physical structure of protein fibrils in the native extracellular matrix. In this study, we utilized cell matrix engineering combined with cell sheet matrix and electrospinning technologies. We studied small-diameter vascular grafts in vitro by seeding smooth muscle cells onto electrospun poly(lactide-co-ɛ-caprolactone) (PLCL) scaffolds, culturing and constructing a three-dimensional network. The vascular grafts constructed using cell matrix engineering were similar to the native vessels in their mechanical properties, such as tensile strength, tensile strain, and e-modulus. Also, they had a self-sealing property more improved than GORE-TEX because PLCL has compatible elasticity. Small-diameter vascular grafts constructed using matrix engineering have the potential to be suitable for vascular grafts.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>22462723</pmid><doi>10.1089/ten.tea.2011.0695</doi><tpages>1449</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1937-3341
ispartof Tissue engineering. Part A, 2012-08, Vol.18 (15-16), p.168-1616
issn 1937-3341
1937-335X
language eng
recordid cdi_proquest_miscellaneous_1093456250
source Mary Ann Liebert Online Subscription
subjects Animals
Blood Vessel Prosthesis
Blood Vessels - anatomy & histology
Blood Vessels - ultrastructure
Cardiovascular disease
Cell Proliferation - drug effects
Cell Survival - drug effects
Cells, Cultured
DNA - metabolism
Extracellular matrix
Fibrils
Male
Materials Testing
Mechanical properties
Myocytes, Smooth Muscle - cytology
Myocytes, Smooth Muscle - drug effects
Myocytes, Smooth Muscle - metabolism
Nanomaterials
Original Articles
Phospholipase C
Polyesters - pharmacology
Protein structure
Rabbits
scaffolds
Smooth muscle
Tensile strength
Tensile Strength - drug effects
Tissue engineering
Tissue Engineering - methods
title Three-Dimensional Electrospun Poly(Lactide-Co-ɛ-Caprolactone) for Small-Diameter Vascular Grafts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A28%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Dimensional%20Electrospun%20Poly(Lactide-Co-%C9%9B-Caprolactone)%20for%20Small-Diameter%20Vascular%20Grafts&rft.jtitle=Tissue%20engineering.%20Part%20A&rft.au=Mun,%20Cho%20Hay&rft.date=2012-08-01&rft.volume=18&rft.issue=15-16&rft.spage=168&rft.epage=1616&rft.pages=168-1616&rft.issn=1937-3341&rft.eissn=1937-335X&rft_id=info:doi/10.1089/ten.tea.2011.0695&rft_dat=%3Cproquest_cross%3E1034199153%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-eb9df8dcd2d9296ffef82ebbb49fa20a4d77b4dd5f37c9d348aef4456f13579c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1036588392&rft_id=info:pmid/22462723&rfr_iscdi=true