Loading…
Three-Dimensional Electrospun Poly(Lactide-Co-ɛ-Caprolactone) for Small-Diameter Vascular Grafts
Nanofibers have been applied to tissue engineering scaffolds because fiber diameters are of the same scale as the physical structure of protein fibrils in the native extracellular matrix. In this study, we utilized cell matrix engineering combined with cell sheet matrix and electrospinning technolog...
Saved in:
Published in: | Tissue engineering. Part A 2012-08, Vol.18 (15-16), p.168-1616 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c458t-eb9df8dcd2d9296ffef82ebbb49fa20a4d77b4dd5f37c9d348aef4456f13579c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c458t-eb9df8dcd2d9296ffef82ebbb49fa20a4d77b4dd5f37c9d348aef4456f13579c3 |
container_end_page | 1616 |
container_issue | 15-16 |
container_start_page | 168 |
container_title | Tissue engineering. Part A |
container_volume | 18 |
creator | Mun, Cho Hay Jung, Youngmee Kim, Sang-Heon Lee, Sun-Hee Kim, Hee Chan Kwon, Il Keun Kim, Soo Hyun |
description | Nanofibers have been applied to tissue engineering scaffolds because fiber diameters are of the same scale as the physical structure of protein fibrils in the native extracellular matrix. In this study, we utilized cell matrix engineering combined with cell sheet matrix and electrospinning technologies. We studied small-diameter vascular grafts
in vitro
by seeding smooth muscle cells onto electrospun poly(lactide-co-ɛ-caprolactone) (PLCL) scaffolds, culturing and constructing a three-dimensional network. The vascular grafts constructed using cell matrix engineering were similar to the native vessels in their mechanical properties, such as tensile strength, tensile strain, and e-modulus. Also, they had a self-sealing property more improved than GORE-TEX because PLCL has compatible elasticity. Small-diameter vascular grafts constructed using matrix engineering have the potential to be suitable for vascular grafts. |
doi_str_mv | 10.1089/ten.tea.2011.0695 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1093456250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1034199153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-eb9df8dcd2d9296ffef82ebbb49fa20a4d77b4dd5f37c9d348aef4456f13579c3</originalsourceid><addsrcrecordid>eNqNkc9qFTEUh4MotlYfwI0MuKmLuebvZLKU21qFCwpWcTecSU5wSmZyTTKLPotP5FuZ661duOoiJBy-8yP8PkJeMrphtDdvCy6bgrDhlLEN7Yx6RE6ZEboVQn1_fP-W7IQ8y_mG0o52Wj8lJ5zLjmsuTglc_0iI7cU045KnuEBoLgPakmLer0vzOYbb8x3YMjlst7H9_avdwj7FUEdxwTeNj6n5MkMINQJmLJiab5DtGiA1Vwl8yc_JEw8h44u7-4x8fX95vf3Q7j5dfdy-27VWqr60OBrne2cdd4abznv0PcdxHKXxwClIp_UonVNeaGuckD2gl1J1ngmljRVn5PyYW7_3c8VchnnKFkOABeOaB0aNqDhX9AFo7cwYpkRFX_-H3sQ11Zr-Up3qe2F4pdiRsrW3nNAP-zTNkG4rNBxUDVVVPTAcVA0HVXXn1V3yOs7o7jf-uamAPgKHMSxLmHDEVB4Q_QfvnKST</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1036588392</pqid></control><display><type>article</type><title>Three-Dimensional Electrospun Poly(Lactide-Co-ɛ-Caprolactone) for Small-Diameter Vascular Grafts</title><source>Mary Ann Liebert Online Subscription</source><creator>Mun, Cho Hay ; Jung, Youngmee ; Kim, Sang-Heon ; Lee, Sun-Hee ; Kim, Hee Chan ; Kwon, Il Keun ; Kim, Soo Hyun</creator><creatorcontrib>Mun, Cho Hay ; Jung, Youngmee ; Kim, Sang-Heon ; Lee, Sun-Hee ; Kim, Hee Chan ; Kwon, Il Keun ; Kim, Soo Hyun</creatorcontrib><description>Nanofibers have been applied to tissue engineering scaffolds because fiber diameters are of the same scale as the physical structure of protein fibrils in the native extracellular matrix. In this study, we utilized cell matrix engineering combined with cell sheet matrix and electrospinning technologies. We studied small-diameter vascular grafts
in vitro
by seeding smooth muscle cells onto electrospun poly(lactide-co-ɛ-caprolactone) (PLCL) scaffolds, culturing and constructing a three-dimensional network. The vascular grafts constructed using cell matrix engineering were similar to the native vessels in their mechanical properties, such as tensile strength, tensile strain, and e-modulus. Also, they had a self-sealing property more improved than GORE-TEX because PLCL has compatible elasticity. Small-diameter vascular grafts constructed using matrix engineering have the potential to be suitable for vascular grafts.</description><identifier>ISSN: 1937-3341</identifier><identifier>EISSN: 1937-335X</identifier><identifier>DOI: 10.1089/ten.tea.2011.0695</identifier><identifier>PMID: 22462723</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Animals ; Blood Vessel Prosthesis ; Blood Vessels - anatomy & histology ; Blood Vessels - ultrastructure ; Cardiovascular disease ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; Cells, Cultured ; DNA - metabolism ; Extracellular matrix ; Fibrils ; Male ; Materials Testing ; Mechanical properties ; Myocytes, Smooth Muscle - cytology ; Myocytes, Smooth Muscle - drug effects ; Myocytes, Smooth Muscle - metabolism ; Nanomaterials ; Original Articles ; Phospholipase C ; Polyesters - pharmacology ; Protein structure ; Rabbits ; scaffolds ; Smooth muscle ; Tensile strength ; Tensile Strength - drug effects ; Tissue engineering ; Tissue Engineering - methods</subject><ispartof>Tissue engineering. Part A, 2012-08, Vol.18 (15-16), p.168-1616</ispartof><rights>2012, Mary Ann Liebert, Inc.</rights><rights>(©) Copyright 2012, Mary Ann Liebert, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-eb9df8dcd2d9296ffef82ebbb49fa20a4d77b4dd5f37c9d348aef4456f13579c3</citedby><cites>FETCH-LOGICAL-c458t-eb9df8dcd2d9296ffef82ebbb49fa20a4d77b4dd5f37c9d348aef4456f13579c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.liebertpub.com/doi/epdf/10.1089/ten.tea.2011.0695$$EPDF$$P50$$Gmaryannliebert$$H</linktopdf><linktohtml>$$Uhttps://www.liebertpub.com/doi/full/10.1089/ten.tea.2011.0695$$EHTML$$P50$$Gmaryannliebert$$H</linktohtml><link.rule.ids>314,780,784,3042,21723,27924,27925,55291,55303</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22462723$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mun, Cho Hay</creatorcontrib><creatorcontrib>Jung, Youngmee</creatorcontrib><creatorcontrib>Kim, Sang-Heon</creatorcontrib><creatorcontrib>Lee, Sun-Hee</creatorcontrib><creatorcontrib>Kim, Hee Chan</creatorcontrib><creatorcontrib>Kwon, Il Keun</creatorcontrib><creatorcontrib>Kim, Soo Hyun</creatorcontrib><title>Three-Dimensional Electrospun Poly(Lactide-Co-ɛ-Caprolactone) for Small-Diameter Vascular Grafts</title><title>Tissue engineering. Part A</title><addtitle>Tissue Eng Part A</addtitle><description>Nanofibers have been applied to tissue engineering scaffolds because fiber diameters are of the same scale as the physical structure of protein fibrils in the native extracellular matrix. In this study, we utilized cell matrix engineering combined with cell sheet matrix and electrospinning technologies. We studied small-diameter vascular grafts
in vitro
by seeding smooth muscle cells onto electrospun poly(lactide-co-ɛ-caprolactone) (PLCL) scaffolds, culturing and constructing a three-dimensional network. The vascular grafts constructed using cell matrix engineering were similar to the native vessels in their mechanical properties, such as tensile strength, tensile strain, and e-modulus. Also, they had a self-sealing property more improved than GORE-TEX because PLCL has compatible elasticity. Small-diameter vascular grafts constructed using matrix engineering have the potential to be suitable for vascular grafts.</description><subject>Animals</subject><subject>Blood Vessel Prosthesis</subject><subject>Blood Vessels - anatomy & histology</subject><subject>Blood Vessels - ultrastructure</subject><subject>Cardiovascular disease</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Cells, Cultured</subject><subject>DNA - metabolism</subject><subject>Extracellular matrix</subject><subject>Fibrils</subject><subject>Male</subject><subject>Materials Testing</subject><subject>Mechanical properties</subject><subject>Myocytes, Smooth Muscle - cytology</subject><subject>Myocytes, Smooth Muscle - drug effects</subject><subject>Myocytes, Smooth Muscle - metabolism</subject><subject>Nanomaterials</subject><subject>Original Articles</subject><subject>Phospholipase C</subject><subject>Polyesters - pharmacology</subject><subject>Protein structure</subject><subject>Rabbits</subject><subject>scaffolds</subject><subject>Smooth muscle</subject><subject>Tensile strength</subject><subject>Tensile Strength - drug effects</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><issn>1937-3341</issn><issn>1937-335X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkc9qFTEUh4MotlYfwI0MuKmLuebvZLKU21qFCwpWcTecSU5wSmZyTTKLPotP5FuZ661duOoiJBy-8yP8PkJeMrphtDdvCy6bgrDhlLEN7Yx6RE6ZEboVQn1_fP-W7IQ8y_mG0o52Wj8lJ5zLjmsuTglc_0iI7cU045KnuEBoLgPakmLer0vzOYbb8x3YMjlst7H9_avdwj7FUEdxwTeNj6n5MkMINQJmLJiab5DtGiA1Vwl8yc_JEw8h44u7-4x8fX95vf3Q7j5dfdy-27VWqr60OBrne2cdd4abznv0PcdxHKXxwClIp_UonVNeaGuckD2gl1J1ngmljRVn5PyYW7_3c8VchnnKFkOABeOaB0aNqDhX9AFo7cwYpkRFX_-H3sQ11Zr-Up3qe2F4pdiRsrW3nNAP-zTNkG4rNBxUDVVVPTAcVA0HVXXn1V3yOs7o7jf-uamAPgKHMSxLmHDEVB4Q_QfvnKST</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Mun, Cho Hay</creator><creator>Jung, Youngmee</creator><creator>Kim, Sang-Heon</creator><creator>Lee, Sun-Hee</creator><creator>Kim, Hee Chan</creator><creator>Kwon, Il Keun</creator><creator>Kim, Soo Hyun</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20120801</creationdate><title>Three-Dimensional Electrospun Poly(Lactide-Co-ɛ-Caprolactone) for Small-Diameter Vascular Grafts</title><author>Mun, Cho Hay ; Jung, Youngmee ; Kim, Sang-Heon ; Lee, Sun-Hee ; Kim, Hee Chan ; Kwon, Il Keun ; Kim, Soo Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-eb9df8dcd2d9296ffef82ebbb49fa20a4d77b4dd5f37c9d348aef4456f13579c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Blood Vessel Prosthesis</topic><topic>Blood Vessels - anatomy & histology</topic><topic>Blood Vessels - ultrastructure</topic><topic>Cardiovascular disease</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Cells, Cultured</topic><topic>DNA - metabolism</topic><topic>Extracellular matrix</topic><topic>Fibrils</topic><topic>Male</topic><topic>Materials Testing</topic><topic>Mechanical properties</topic><topic>Myocytes, Smooth Muscle - cytology</topic><topic>Myocytes, Smooth Muscle - drug effects</topic><topic>Myocytes, Smooth Muscle - metabolism</topic><topic>Nanomaterials</topic><topic>Original Articles</topic><topic>Phospholipase C</topic><topic>Polyesters - pharmacology</topic><topic>Protein structure</topic><topic>Rabbits</topic><topic>scaffolds</topic><topic>Smooth muscle</topic><topic>Tensile strength</topic><topic>Tensile Strength - drug effects</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mun, Cho Hay</creatorcontrib><creatorcontrib>Jung, Youngmee</creatorcontrib><creatorcontrib>Kim, Sang-Heon</creatorcontrib><creatorcontrib>Lee, Sun-Hee</creatorcontrib><creatorcontrib>Kim, Hee Chan</creatorcontrib><creatorcontrib>Kwon, Il Keun</creatorcontrib><creatorcontrib>Kim, Soo Hyun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Tissue engineering. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mun, Cho Hay</au><au>Jung, Youngmee</au><au>Kim, Sang-Heon</au><au>Lee, Sun-Hee</au><au>Kim, Hee Chan</au><au>Kwon, Il Keun</au><au>Kim, Soo Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Dimensional Electrospun Poly(Lactide-Co-ɛ-Caprolactone) for Small-Diameter Vascular Grafts</atitle><jtitle>Tissue engineering. Part A</jtitle><addtitle>Tissue Eng Part A</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>18</volume><issue>15-16</issue><spage>168</spage><epage>1616</epage><pages>168-1616</pages><issn>1937-3341</issn><eissn>1937-335X</eissn><abstract>Nanofibers have been applied to tissue engineering scaffolds because fiber diameters are of the same scale as the physical structure of protein fibrils in the native extracellular matrix. In this study, we utilized cell matrix engineering combined with cell sheet matrix and electrospinning technologies. We studied small-diameter vascular grafts
in vitro
by seeding smooth muscle cells onto electrospun poly(lactide-co-ɛ-caprolactone) (PLCL) scaffolds, culturing and constructing a three-dimensional network. The vascular grafts constructed using cell matrix engineering were similar to the native vessels in their mechanical properties, such as tensile strength, tensile strain, and e-modulus. Also, they had a self-sealing property more improved than GORE-TEX because PLCL has compatible elasticity. Small-diameter vascular grafts constructed using matrix engineering have the potential to be suitable for vascular grafts.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>22462723</pmid><doi>10.1089/ten.tea.2011.0695</doi><tpages>1449</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1937-3341 |
ispartof | Tissue engineering. Part A, 2012-08, Vol.18 (15-16), p.168-1616 |
issn | 1937-3341 1937-335X |
language | eng |
recordid | cdi_proquest_miscellaneous_1093456250 |
source | Mary Ann Liebert Online Subscription |
subjects | Animals Blood Vessel Prosthesis Blood Vessels - anatomy & histology Blood Vessels - ultrastructure Cardiovascular disease Cell Proliferation - drug effects Cell Survival - drug effects Cells, Cultured DNA - metabolism Extracellular matrix Fibrils Male Materials Testing Mechanical properties Myocytes, Smooth Muscle - cytology Myocytes, Smooth Muscle - drug effects Myocytes, Smooth Muscle - metabolism Nanomaterials Original Articles Phospholipase C Polyesters - pharmacology Protein structure Rabbits scaffolds Smooth muscle Tensile strength Tensile Strength - drug effects Tissue engineering Tissue Engineering - methods |
title | Three-Dimensional Electrospun Poly(Lactide-Co-ɛ-Caprolactone) for Small-Diameter Vascular Grafts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A28%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Dimensional%20Electrospun%20Poly(Lactide-Co-%C9%9B-Caprolactone)%20for%20Small-Diameter%20Vascular%20Grafts&rft.jtitle=Tissue%20engineering.%20Part%20A&rft.au=Mun,%20Cho%20Hay&rft.date=2012-08-01&rft.volume=18&rft.issue=15-16&rft.spage=168&rft.epage=1616&rft.pages=168-1616&rft.issn=1937-3341&rft.eissn=1937-335X&rft_id=info:doi/10.1089/ten.tea.2011.0695&rft_dat=%3Cproquest_cross%3E1034199153%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-eb9df8dcd2d9296ffef82ebbb49fa20a4d77b4dd5f37c9d348aef4456f13579c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1036588392&rft_id=info:pmid/22462723&rfr_iscdi=true |