Loading…
Kendrin Is a Novel Substrate for Separase Involved in the Licensing of Centriole Duplication
The centrosome, consisting of a pair of centrioles surrounded by pericentriolar material, directs the formation of bipolar spindles during mitosis. Aberrant centrosome number can promote chromosome instability, which is implicated in tumorigenesis [1, 2]. Thus, centrosome duplication needs to be tig...
Saved in:
Published in: | Current biology 2012-05, Vol.22 (10), p.915-921 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The centrosome, consisting of a pair of centrioles surrounded by pericentriolar material, directs the formation of bipolar spindles during mitosis. Aberrant centrosome number can promote chromosome instability, which is implicated in tumorigenesis [1, 2]. Thus, centrosome duplication needs to be tightly regulated to occur only once per cell cycle. Separase, a cysteine protease that triggers sister chromatid separation [3], is involved in centriole disengagement, which licenses centrosomes for the next round of duplication [4–8]. However, at least two questions remain unsolved: what is the substrate relevant to the disengagement, and how does separase, activated at anaphase onset, act on the disengagement that occurs during late mitosis [6, 7, 9, 10]. Here, we show that kendrin, also named pericentrin, is cleaved by activated separase at a consensus site in vivo and in vitro, and this leads to the delayed release of kendrin from the centrosome later in mitosis. Furthermore, we demonstrate that expression of a noncleavable kendrin mutant suppresses centriole disengagement and subsequent centriole duplication. Based on these results, we propose that kendrin is a novel and crucial substrate for separase at the centrosome, protecting the engaged centrioles from premature disengagement and thereby blocking reduplication until the cell passes through mitosis.
► Kendrin is directly cleaved by separase at a consensus site during mitosis ► The cleaved kendrin is released from centrosomes after a short lag ► Centriole disengagement coincides with a decrease in the kendrin signal ► Noncleavable kendrin expression suppresses centriole disengagement and duplication |
---|---|
ISSN: | 0960-9822 1879-0445 |
DOI: | 10.1016/j.cub.2012.03.048 |