Loading…

Variation of Respiratory Resistance Suggests Optimization of Airway Caliber

Physiologically optimized processes, such as respiration, walking, and cardiac function, usually show a range of variability about the optimized value. Airway resistance has, in the past, been noted as variable, and this variability has been connected to pulmonary disease (e.g., asthma). A hypothesi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2012-08, Vol.59 (8), p.2355-2361
Main Authors: Johnson, Arthur T., Jones, Samantha C., Pan, James J., Vossoughi, Jafar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Physiologically optimized processes, such as respiration, walking, and cardiac function, usually show a range of variability about the optimized value. Airway resistance has, in the past, been noted as variable, and this variability has been connected to pulmonary disease (e.g., asthma). A hypothesis was presented many years ago that postulated airway resistance as an optimized parameter in healthy individuals, and we have noticed that respiratory measurements made with the airflow perturbation device (APD) tend to be variable in nature. It was posited that this variability indicates that respiratory resistance is optimized similarly to other physiological processes. Fifty subjects with a wide range of demographics volunteered to have 100 measurements made of their respiratory resistances. Resistances were separated into inhalation and exhalation phases. These were plotted and shown to have frequency distributions that were consistent with expectations for an optimized process. The frequency distributions were not quite symmetrical, being skewed slightly toward upper resistances. Comparison between subject data and data from a mechanical respiratory analog showed that subject resistance variation is overwhelmingly from the respiratory system and not from the APD.
ISSN:0018-9294
1558-2531
DOI:10.1109/TBME.2012.2204055