Loading…

Modeling of Open, Closed, and Open-Inactivated States of the hERG1 Channel: Structural Mechanisms of the State-Dependent Drug Binding

The human ether-a-go-go related gene 1 (hERG1) K ion channel is a key element for the rapid component of the delayed rectified potassium current in cardiac myocytes. Since there are no crystal structures for hERG channels, creation and validation of its reliable atomistic models have been key target...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical information and modeling 2012-10, Vol.52 (10), p.2760-2774
Main Authors: Durdagi, Serdar, Deshpande, Sumukh, Duff, Henry J, Noskov, Sergei Y
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The human ether-a-go-go related gene 1 (hERG1) K ion channel is a key element for the rapid component of the delayed rectified potassium current in cardiac myocytes. Since there are no crystal structures for hERG channels, creation and validation of its reliable atomistic models have been key targets in molecular cardiology for the past decade. In this study, we developed and vigorously validated models for open, closed, and open-inactivated states of hERG1 using a multistep protocol. The conserved elements were derived using multiple-template homology modeling utilizing available structures for Kv1.2, Kv1.2/2.1 chimera, and KcsA channels. Then missing elements were modeled with the ROSETTA De Novo protein-designing suite and further refined with all-atom molecular dynamics simulations. The final ensemble of models was evaluated for consistency to the reported experimental data from biochemical, biophysical, and electrophysiological studies. The closed state models were cross-validated against available experimental data on toxin footprinting with protein–protein docking using hERG state-selective toxin BeKm-1. Poisson–Boltzmann calculations were performed to determine gating charge and compare it to electrophysiological measurements. The validated structures offered us a unique chance to assess molecular mechanisms of state-dependent drug binding in three different states of the channel.
ISSN:1549-9596
1549-960X
DOI:10.1021/ci300353u