Loading…
Room temperature biogenic synthesis of multiple nanoparticles (Ag, Pd, Fe, Rh, Ni, Ru, Pt, Co, and Li) by Pseudomonas aeruginosa SM1
Room temperature biosynthesis of Ag, Pd, Fe, Rh, Ni, Ru, Pt, Co, and Li nanoparticles was achieved using Pseudomonas aeruginosa SM1 without the addition of growth media, electron donors, stabilizing agents, preparation of cell/cell-free extract or temperature, and pH adjustments. The resulting nanop...
Saved in:
Published in: | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2012-03, Vol.14 (4), p.1-10, Article 831 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Room temperature biosynthesis of Ag, Pd, Fe, Rh, Ni, Ru, Pt, Co, and Li nanoparticles was achieved using
Pseudomonas aeruginosa
SM1 without the addition of growth media, electron donors, stabilizing agents, preparation of cell/cell-free extract or temperature, and pH adjustments. The resulting nanoparticles were characterized by Transmission electron microscopy and X-ray diffraction. It was observed that
P. aeruginosa
SM1 is capable of producing both intracellular (Co and Li) and extracellular (Ag, Pd, Fe, Rh, Ni, Ru, and Pt) nanoparticles in both crystalline and amorphous state. The FT-IR spectra clearly showed the presence of primary and secondary amines which may be responsible for the reduction and subsequent stabilization of the resulting extracellular nanoparticles which were obtained as a one-step process. This suggests toward an unknown “selection mechanism” that reduces certain metal ions and allows others to enter the cell membrane. Finally, in this first of its kind study, single strain of bacteria was used to produce several different mono-metallic nanoparticles. |
---|---|
ISSN: | 1388-0764 1572-896X |
DOI: | 10.1007/s11051-012-0831-7 |