Loading…
Marginal log-linear parameterization of conditional independence models
Models defined by a set of conditional independence restrictions play an important role in statistical theory and applications, especially, but not only, in graphical modelling. In this paper we identify a subclass of these consisting of hierarchical marginal log-linear models, as defined by Bergsma...
Saved in:
Published in: | Biometrika 2010-12, Vol.97 (4), p.1006-1012 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Models defined by a set of conditional independence restrictions play an important role in statistical theory and applications, especially, but not only, in graphical modelling. In this paper we identify a subclass of these consisting of hierarchical marginal log-linear models, as defined by Bergsma & Rudas (2002a). Such models are smooth, which implies the applicability of standard asymptotic theory and simplifies interpretation. Furthermore, we give a marginal log-linear parameterization and a minimal specification of the models in the subclass, which implies the applicability of standard methods to compute maximum likelihood estimates and simplifies the calculation of the degrees of freedom of chi-squared statistics to test goodness-of-fit. The utility of the results is illustrated by applying them to block-recursive Markov models associated with chain graphs. |
---|---|
ISSN: | 0006-3444 1464-3510 1464-3510 0006-3444 |
DOI: | 10.1093/biomet/asq037 |