Loading…
The broad emission-line region: the confluence of the outer accretion disc with the inner edge of the dusty torus
Abstract We have investigated the observational characteristics of a class of broad emission line region (BLR) geometries that connect the outer accretion disc with the inner edge of the dusty toroidal obscuring region (TOR). We suggest that the BLR consists of photoionized gas of densities which al...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society 2012-11, Vol.426 (4), p.3086-3111 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
We have investigated the observational characteristics of a class of broad emission line region (BLR) geometries that connect the outer accretion disc with the inner edge of the dusty toroidal obscuring region (TOR). We suggest that the BLR consists of photoionized gas of densities which allow for efficient cooling by ultraviolet (UV)/optical emission lines and of incident continuum fluxes which discourage the formation of grains, and that such gas occupies the range of distance and scale height between the continuum-emitting accretion disc and the dusty TOR. As a first approximation, we assume a population of clouds illuminated by ionizing photons from the central source, with the scale height of the illuminated clouds growing with increasing radial distance, forming an effective surface of a 'bowl'. Observer lines of sight which peer into the bowl lead to a Type 1 active galactic nuclei (AGN) spectrum. We assume that the gas dynamics are dominated by gravity, and we include in this model the effects of transverse Doppler shift (TDS), gravitational redshift (GR) and scale-height-dependent macroturbulence.
Our simple model reproduces many of the commonly observed phenomena associated with the central regions of AGN, including (i) the shorter than expected continuum-dust delays (geometry), (ii) the absence of response in the core of the optical recombination lines on short time-scales (geometry/photoionization), (iii) an enhanced redwing response on short time-scales (GR and TDS), (iv) the observed differences between the delays for high- and low-ionization lines (photoionization), (v) identifying one of the possible primary contributors to the observed line widths for near face-on systems even for purely transverse motion (GR and TDS), (vi) a mechanism responsible for producing Lorentzian profiles (especially in the Balmer and Mg ii emission lines) in low-inclination systems (turbulence), (vii) the absence of significant continuum-emission-line delays between the line wings and line core (turbulence; such time delays are weak for virialized motion, and turbulence serves to reduce any differences which may be present), (viii) associating the boundary between population A and population B sources as the cross-over between inclination-dependent (population A) and inclination-independent (population B) line profiles (GR+TDS), (ix) a partial explanation of the differences between the emission-line profiles, here explained in terms of their line formati |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1111/j.1365-2966.2012.21808.x |