Loading…

Temperature Sensitivity of Methane Production in the Permafrost Active Layer at Stordalen, Sweden: A Comparison with Non-permafrost Northern Wetlands

Relationships were determined between methane (CH4) production and in situ conditions within the permafrost active layer during a single melt season at Stordalen, Sweden, with a specific emphasis on temperature sensitivity of methanogenesis. In situ temperature, moisture, pH, dissolved organic carbo...

Full description

Saved in:
Bibliographic Details
Published in:Arctic, antarctic, and alpine research antarctic, and alpine research, 2012-11, Vol.44 (4), p.469-482
Main Authors: Lupascu, M, Wadham, J. L, Hornibrook, E. R. C, Pancost, R. D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Relationships were determined between methane (CH4) production and in situ conditions within the permafrost active layer during a single melt season at Stordalen, Sweden, with a specific emphasis on temperature sensitivity of methanogenesis. In situ temperature, moisture, pH, dissolved organic carbon, and CH4 concentration data were measured at three contrasting active layer sites (sedge mire, Sphagnum mire, and ombrotrophic bog), and laboratory incubations of active layer material were subsequently employed to determine the sensitivity of CH4 production to temperature. Q10 values, describing the CH4 production response of peat to a temperature change of 10 °C, ranged from 1.9 to 3.5 and 2.4 to 5.8 for the sedge and Sphagnum mire sites, respectively. A wider review of the literature on Q10 responses of methanogenesis in northern peatlands shows similar features to the temperature response of CH4 production in the active layer at Stordalen. In general, Q10 values are not significantly different in Arctic permafrost wetlands than non-Arctic northern wetlands; however, Sphagnum sites display Q10 responses (mean Q10 = 8) that are notably greater than that of wetter minerotrophic-sedge environments (mean Q10 = 4.3). This finding has implications for the parameterization of Q10 factors in numerical carbon cycling models, and suggests that the use of spatially variable Q10 values could be a useful approach for more accurate modeling of CH4 fluxes from northern wetlands under different climatic change scenarios.
ISSN:1523-0430
1938-4246
DOI:10.1657/1938-4246-44.4.469