Loading…
Joint composite estimating functions in spatiotemporal models
Modelling of spatiotemporal processes has received considerable attention in recent statistical research. However, owing to the high dimensionality of the data, the joint modelling of spatial and temporal processes presents a great computational challenge, in both likelihood‐based and Bayesian appro...
Saved in:
Published in: | Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2012-11, Vol.74 (5), p.799-824 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Modelling of spatiotemporal processes has received considerable attention in recent statistical research. However, owing to the high dimensionality of the data, the joint modelling of spatial and temporal processes presents a great computational challenge, in both likelihood‐based and Bayesian approaches. We propose a joint composite estimating function approach to estimating spatiotemporal covariance structures. This substantially reduces the computational complexity and is more efficient than existing composite likelihood methods. The novelty of the proposed joint composite estimating function is rooted in the construction of three sets of estimating functions from spatial, temporal and spatiotemporal cross‐pairs, which results in overidentified estimating functions. Thus, we form a joint inference function in a spirit that is similar to Hansen's generalized method of moments. We show that under practical scenarios the estimator proposed is consistent and asymptotically normal. Simulation studies prove that our method performs well in finite samples. Finally, we illustrate the joint composite estimating function method by estimating the spatiotemporal dependence structure of airborne particulates (PM10) in the north‐eastern USA over a 32‐month period. |
---|---|
ISSN: | 1369-7412 1467-9868 |
DOI: | 10.1111/j.1467-9868.2012.01035.x |