Loading…
Chronic potentiation of cardiac L-type Ca(2+) channels by pirfenidone
On the basis of its ability to inhibit fibrosis, pirfenidone has drawn the attention as an intriguing candidate for treating cardiac disease. However, its precise electrophysiological effects have yet to be elucidated. Here, we have investigated its potential to modulate ion channels. Adult rat card...
Saved in:
Published in: | Cardiovascular research 2012-11, Vol.96 (2), p.244-254 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | On the basis of its ability to inhibit fibrosis, pirfenidone has drawn the attention as an intriguing candidate for treating cardiac disease. However, its precise electrophysiological effects have yet to be elucidated. Here, we have investigated its potential to modulate ion channels.
Adult rat cardiac myocytes were investigated using whole-cell patch-clamp, western-blot and qRT-PCR techniques. Pirfenidone increased the density of L-type Ca(2+) current (I(CaL,) 50-100%), without significantly altering Na(+), K(+), or T-type Ca(2+) currents. The effect was dose-dependent, with an EC(50) of 2.8 µM. Its onset was slow, with a lag period larger than 1 h and time to maximum of 24-48 h. Concomitant changes were observed in the voltage-dependent activation of I(CaL) (-5 mV shift in both V(1/2) and k). In contrast, the following properties of I(CaL) remained normal: steady-state inactivation, Ca(V)1.2 levels (mRNA and protein), and intramembrane charge movement. Indeed, the conductance-to-charge ratio, or G(max)/Q(max), was increased by 80%. The effect on I(CaL) was mimicked by an inhibitor of nitric oxide (NO) synthase (NOS), and attenuated by both cyclic adenosine monophosphate (cAMP) and cAMP-dependent protein kinase (PKA) inhibitors. Conversely, cytokines, reactive oxygen species, and Ca(2+) were all ruled out as possible intermediaries. Additional experiments suggest that pirfenidone increases action potential duration by ∼50%.
Pirfenidone augments I(CaL), not through higher expression of L-type channels, but through promoting their Ca(2+)-conducting activity. A possible inhibition of NOS expression is likely involved, with subsequent reduced NO production and stimulated cAMP/PKA signalling. These findings may be relevant to the cardioprotective effect of pirfenidone. |
---|---|
ISSN: | 1755-3245 |
DOI: | 10.1093/cvr/cvs248 |