Loading…

Melatonin suppresses doxorubicin-induced premature senescence of A549 lung cancer cells by ameliorating mitochondrial dysfunction

:  Melatonin is an indolamine that is synthesized in the pineal gland and shows a wide range of physiological functions. Although the anti‐aging properties of melatonin have been reported in a senescence‐accelerated mouse model, whether melatonin modulates cellular senescence has not been determined...

Full description

Saved in:
Bibliographic Details
Published in:Journal of pineal research 2012-11, Vol.53 (4), p.335-343
Main Authors: Song, Naree, Kim, Ae Jeong, Kim, Hyun-Ju, Jee, Hye Jin, Kim, Minjee, Yoo, Young Hyun, Yun, Jeanho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary::  Melatonin is an indolamine that is synthesized in the pineal gland and shows a wide range of physiological functions. Although the anti‐aging properties of melatonin have been reported in a senescence‐accelerated mouse model, whether melatonin modulates cellular senescence has not been determined. In this study, we examined the effect of melatonin on anticancer drug‐induced cellular premature senescence. We found that the doxorubicin (DOX)‐induced senescence of A549 human lung cancer cells and IMR90 normal lung cells was substantially inhibited by cotreatment with melatonin in a dose‐dependent manner. Mechanistically, the DOX‐induced G2/M phase cell cycle arrest and the decrease in cyclinB and cdc2 expression were not affected by melatonin. However, the DOX‐induced increase in intracellular levels of ROS, which is necessary for premature senescence, was completely abolished upon melatonin cotreatment. In addition, the reduction in mitochondrial membrane potential that occurs upon DOX treatment was inhibited by melatonin. An aberrant increase in mitochondrial respiration was also significantly suppressed by melatonin, indicating that melatonin ameliorates the mitochondrial dysfunction induced by DOX treatment. The treatment of A549 cells with luzindole, a potent inhibitor of melatonin receptors, failed to prevent the effects of melatonin treatment on mitochondrial functions and premature senescence in cells also treated with DOX; this suggests that melatonin suppresses DOX‐induced senescence in a melatonin receptor‐independent manner. Together, these results reveal that melatonin has an inhibitory effect of melatonin on premature senescence at the cellular level and that melatonin protects A549 cells from DOX‐induced senescence. Thus, melatonin might have the therapeutic potential to prevent the side effects of anticancer drug therapy.
ISSN:0742-3098
1600-079X
DOI:10.1111/j.1600-079X.2012.01003.x