Loading…

Assessment of carotid atherosclerosis from B-mode ultrasound images using directional multiscale texture features

In this paper, three multiscale transforms with directional character, namely the dual-tree complex wavelet (DTCWT), the finite ridgelet (FRIT) and the fast discrete curvelet (FDCT) transforms, were comparatively assessed with respect to their ability to characterize carotid atherosclerotic plaque f...

Full description

Saved in:
Bibliographic Details
Published in:Measurement science & technology 2012-11, Vol.23 (11), p.114004-1-10
Main Authors: Tsiaparas, N N, Golemati, S, Andreadis, I, Stoitsis, J, Valavanis, I, Nikita, K S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, three multiscale transforms with directional character, namely the dual-tree complex wavelet (DTCWT), the finite ridgelet (FRIT) and the fast discrete curvelet (FDCT) transforms, were comparatively assessed with respect to their ability to characterize carotid atherosclerotic plaque from B-mode ultrasound and discriminate between symptomatic and asymptomatic cases. The standard deviation and entropy of the detail subimages produced for each decomposition scheme were used as texture features. Feature selection included ranking the features according to their highest separability value and the minimum correlation among them. Due to the rather limited size of the sample population, the selected features were resampled 100 times by the bootstrap technique and divided into training and test sets. For each pair of sets, a support vector machine classifier was trained on the training set and evaluated on the test set. The average overall classification performance for systole (diastole) was 70% (65.2%), 72.6% (70.4%) and 84.9% (73.6%) for the DTCWT, FRIT and FDCT, respectively. These preliminary results showed the superiority of the curvelet transform, in terms of classification accuracy, being of great importance for the diagnosis and management of plaque instability in carotid atheromatous stenosis.
ISSN:0957-0233
1361-6501
DOI:10.1088/0957-0233/23/11/114004