Loading…

Mining urban land-use patterns from volunteered geographic information by means of genetic algorithms and artificial neural networks

In the context of OpenStreetMap (OSM), spatial data quality, in particular completeness, is an essential aspect of its fitness for use in specific applications, such as planning tasks. To mitigate the effect of completeness errors in OSM, this study proposes a methodological framework for predicting...

Full description

Saved in:
Bibliographic Details
Published in:International journal of geographical information science : IJGIS 2012-06, Vol.26 (6), p.963-982
Main Authors: Hagenauer, Julian, Helbich, Marco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the context of OpenStreetMap (OSM), spatial data quality, in particular completeness, is an essential aspect of its fitness for use in specific applications, such as planning tasks. To mitigate the effect of completeness errors in OSM, this study proposes a methodological framework for predicting by means of OSM urban areas in Europe that are currently not mapped or only partially mapped. For this purpose, a machine learning approach consisting of artificial neural networks and genetic algorithms is applied. Under the premise of existing OSM data, the model estimates missing urban areas with an overall squared correlation coefficient (R 2 ) of 0.589. Interregional comparisons of European regions confirm spatial heterogeneity in the model performance, whereas the R 2 ranges from 0.129 up to 0.789. These results show that the delineation of urban areas by means of the presented methodology depends strongly on location.
ISSN:1365-8816
1362-3087
1365-8824
DOI:10.1080/13658816.2011.619501