Loading…
Mining urban land-use patterns from volunteered geographic information by means of genetic algorithms and artificial neural networks
In the context of OpenStreetMap (OSM), spatial data quality, in particular completeness, is an essential aspect of its fitness for use in specific applications, such as planning tasks. To mitigate the effect of completeness errors in OSM, this study proposes a methodological framework for predicting...
Saved in:
Published in: | International journal of geographical information science : IJGIS 2012-06, Vol.26 (6), p.963-982 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-116b2a89f94d40add8a5c23660294b4f16df2cbcf742ed365dcef8adb58478d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-116b2a89f94d40add8a5c23660294b4f16df2cbcf742ed365dcef8adb58478d3 |
container_end_page | 982 |
container_issue | 6 |
container_start_page | 963 |
container_title | International journal of geographical information science : IJGIS |
container_volume | 26 |
creator | Hagenauer, Julian Helbich, Marco |
description | In the context of OpenStreetMap (OSM), spatial data quality, in particular completeness, is an essential aspect of its fitness for use in specific applications, such as planning tasks. To mitigate the effect of completeness errors in OSM, this study proposes a methodological framework for predicting by means of OSM urban areas in Europe that are currently not mapped or only partially mapped. For this purpose, a machine learning approach consisting of artificial neural networks and genetic algorithms is applied. Under the premise of existing OSM data, the model estimates missing urban areas with an overall squared correlation coefficient (R
2
) of 0.589. Interregional comparisons of European regions confirm spatial heterogeneity in the model performance, whereas the R
2
ranges from 0.129 up to 0.789. These results show that the delineation of urban areas by means of the presented methodology depends strongly on location. |
doi_str_mv | 10.1080/13658816.2011.619501 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1268655465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2678309991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-116b2a89f94d40add8a5c23660294b4f16df2cbcf742ed365dcef8adb58478d3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSMEElXpN-BgqRcuWWwndpwTQhW0SFtx6d2a-M_WNLGXsUO1dz443m659NDTjMa_9-SZ1zQfGd0wquhn1kmhFJMbThnbSDYKyt40Z3XM246q4e1TL9oj8765yDlMlHdqVGoQZ83f2xBD3JEVJ4hkhmjbNTuyh1Icxkw8poX8SfMai3PoLNm5tEPY3wdDQvQJFyghRTIdyOKgCpKvSHSlvsO8SxjK_ZJJ9SWAJfhgAswkuhWfSnlM-JA_NO88zNldPNfz5u77t7urm3b78_rH1ddtazqpSsuYnDio0Y-97SlYq0AY3klJ-dhPvWfSem4m44eeO1t3tsZ5BXYSqh-U7c6bTyfbPabfq8tFLyEbN9etXVqzZlwqKUQvRUUvX6C_0oqxfk4zypTo5DCMlepPlMGUMzqv9xgWwEOF9DEc_T8cfQxHn8Kpsi8n2fMB6w1mqwsc5oQeIZqQdfeqwz9mo5jD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1018536779</pqid></control><display><type>article</type><title>Mining urban land-use patterns from volunteered geographic information by means of genetic algorithms and artificial neural networks</title><source>Taylor and Francis Science and Technology Collection</source><creator>Hagenauer, Julian ; Helbich, Marco</creator><creatorcontrib>Hagenauer, Julian ; Helbich, Marco</creatorcontrib><description>In the context of OpenStreetMap (OSM), spatial data quality, in particular completeness, is an essential aspect of its fitness for use in specific applications, such as planning tasks. To mitigate the effect of completeness errors in OSM, this study proposes a methodological framework for predicting by means of OSM urban areas in Europe that are currently not mapped or only partially mapped. For this purpose, a machine learning approach consisting of artificial neural networks and genetic algorithms is applied. Under the premise of existing OSM data, the model estimates missing urban areas with an overall squared correlation coefficient (R
2
) of 0.589. Interregional comparisons of European regions confirm spatial heterogeneity in the model performance, whereas the R
2
ranges from 0.129 up to 0.789. These results show that the delineation of urban areas by means of the presented methodology depends strongly on location.</description><identifier>ISSN: 1365-8816</identifier><identifier>EISSN: 1362-3087</identifier><identifier>EISSN: 1365-8824</identifier><identifier>DOI: 10.1080/13658816.2011.619501</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Genetic algorithms ; Geographic information science ; Land use ; machine learning ; Mapping ; Neural networks ; OpenStreetMap UK ; spatial data quality ; Urban areas ; volunteered geographic information</subject><ispartof>International journal of geographical information science : IJGIS, 2012-06, Vol.26 (6), p.963-982</ispartof><rights>Copyright Taylor & Francis Group, LLC 2012</rights><rights>Copyright Taylor & Francis Group 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-116b2a89f94d40add8a5c23660294b4f16df2cbcf742ed365dcef8adb58478d3</citedby><cites>FETCH-LOGICAL-c368t-116b2a89f94d40add8a5c23660294b4f16df2cbcf742ed365dcef8adb58478d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hagenauer, Julian</creatorcontrib><creatorcontrib>Helbich, Marco</creatorcontrib><title>Mining urban land-use patterns from volunteered geographic information by means of genetic algorithms and artificial neural networks</title><title>International journal of geographical information science : IJGIS</title><description>In the context of OpenStreetMap (OSM), spatial data quality, in particular completeness, is an essential aspect of its fitness for use in specific applications, such as planning tasks. To mitigate the effect of completeness errors in OSM, this study proposes a methodological framework for predicting by means of OSM urban areas in Europe that are currently not mapped or only partially mapped. For this purpose, a machine learning approach consisting of artificial neural networks and genetic algorithms is applied. Under the premise of existing OSM data, the model estimates missing urban areas with an overall squared correlation coefficient (R
2
) of 0.589. Interregional comparisons of European regions confirm spatial heterogeneity in the model performance, whereas the R
2
ranges from 0.129 up to 0.789. These results show that the delineation of urban areas by means of the presented methodology depends strongly on location.</description><subject>Genetic algorithms</subject><subject>Geographic information science</subject><subject>Land use</subject><subject>machine learning</subject><subject>Mapping</subject><subject>Neural networks</subject><subject>OpenStreetMap UK</subject><subject>spatial data quality</subject><subject>Urban areas</subject><subject>volunteered geographic information</subject><issn>1365-8816</issn><issn>1362-3087</issn><issn>1365-8824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1DAQxSMEElXpN-BgqRcuWWwndpwTQhW0SFtx6d2a-M_WNLGXsUO1dz443m659NDTjMa_9-SZ1zQfGd0wquhn1kmhFJMbThnbSDYKyt40Z3XM246q4e1TL9oj8765yDlMlHdqVGoQZ83f2xBD3JEVJ4hkhmjbNTuyh1Icxkw8poX8SfMai3PoLNm5tEPY3wdDQvQJFyghRTIdyOKgCpKvSHSlvsO8SxjK_ZJJ9SWAJfhgAswkuhWfSnlM-JA_NO88zNldPNfz5u77t7urm3b78_rH1ddtazqpSsuYnDio0Y-97SlYq0AY3klJ-dhPvWfSem4m44eeO1t3tsZ5BXYSqh-U7c6bTyfbPabfq8tFLyEbN9etXVqzZlwqKUQvRUUvX6C_0oqxfk4zypTo5DCMlepPlMGUMzqv9xgWwEOF9DEc_T8cfQxHn8Kpsi8n2fMB6w1mqwsc5oQeIZqQdfeqwz9mo5jD</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Hagenauer, Julian</creator><creator>Helbich, Marco</creator><general>Taylor & Francis</general><general>Taylor & Francis LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>20120601</creationdate><title>Mining urban land-use patterns from volunteered geographic information by means of genetic algorithms and artificial neural networks</title><author>Hagenauer, Julian ; Helbich, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-116b2a89f94d40add8a5c23660294b4f16df2cbcf742ed365dcef8adb58478d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Genetic algorithms</topic><topic>Geographic information science</topic><topic>Land use</topic><topic>machine learning</topic><topic>Mapping</topic><topic>Neural networks</topic><topic>OpenStreetMap UK</topic><topic>spatial data quality</topic><topic>Urban areas</topic><topic>volunteered geographic information</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hagenauer, Julian</creatorcontrib><creatorcontrib>Helbich, Marco</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>International journal of geographical information science : IJGIS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hagenauer, Julian</au><au>Helbich, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mining urban land-use patterns from volunteered geographic information by means of genetic algorithms and artificial neural networks</atitle><jtitle>International journal of geographical information science : IJGIS</jtitle><date>2012-06-01</date><risdate>2012</risdate><volume>26</volume><issue>6</issue><spage>963</spage><epage>982</epage><pages>963-982</pages><issn>1365-8816</issn><eissn>1362-3087</eissn><eissn>1365-8824</eissn><abstract>In the context of OpenStreetMap (OSM), spatial data quality, in particular completeness, is an essential aspect of its fitness for use in specific applications, such as planning tasks. To mitigate the effect of completeness errors in OSM, this study proposes a methodological framework for predicting by means of OSM urban areas in Europe that are currently not mapped or only partially mapped. For this purpose, a machine learning approach consisting of artificial neural networks and genetic algorithms is applied. Under the premise of existing OSM data, the model estimates missing urban areas with an overall squared correlation coefficient (R
2
) of 0.589. Interregional comparisons of European regions confirm spatial heterogeneity in the model performance, whereas the R
2
ranges from 0.129 up to 0.789. These results show that the delineation of urban areas by means of the presented methodology depends strongly on location.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/13658816.2011.619501</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1365-8816 |
ispartof | International journal of geographical information science : IJGIS, 2012-06, Vol.26 (6), p.963-982 |
issn | 1365-8816 1362-3087 1365-8824 |
language | eng |
recordid | cdi_proquest_miscellaneous_1268655465 |
source | Taylor and Francis Science and Technology Collection |
subjects | Genetic algorithms Geographic information science Land use machine learning Mapping Neural networks OpenStreetMap UK spatial data quality Urban areas volunteered geographic information |
title | Mining urban land-use patterns from volunteered geographic information by means of genetic algorithms and artificial neural networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A21%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mining%20urban%20land-use%20patterns%20from%20volunteered%20geographic%20information%20by%20means%20of%20genetic%20algorithms%20and%20artificial%20neural%20networks&rft.jtitle=International%20journal%20of%20geographical%20information%20science%20:%20IJGIS&rft.au=Hagenauer,%20Julian&rft.date=2012-06-01&rft.volume=26&rft.issue=6&rft.spage=963&rft.epage=982&rft.pages=963-982&rft.issn=1365-8816&rft.eissn=1362-3087&rft_id=info:doi/10.1080/13658816.2011.619501&rft_dat=%3Cproquest_cross%3E2678309991%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-116b2a89f94d40add8a5c23660294b4f16df2cbcf742ed365dcef8adb58478d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1018536779&rft_id=info:pmid/&rfr_iscdi=true |