Loading…
Efficient Broadcast Authentication using TSG Algorithm for WSN
Wireless Sensor Networks (WSN) is an emerging technology that has a wide range of applications including environment monitoring, medical systems, robotic exploration and smart places. In most of the sensor network sink node send broadcast information to all other sensor nodes. Broadcast authenticati...
Saved in:
Published in: | International journal of computer applications 2012-01, Vol.58 (4), p.34-39 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Wireless Sensor Networks (WSN) is an emerging technology that has a wide range of applications including environment monitoring, medical systems, robotic exploration and smart places. In most of the sensor network sink node send broadcast information to all other sensor nodes. Broadcast authentication is an important security mechanism in a Wireless Sensor Network. . Base station broadcast the public key to all the sensor nodes. Broadcast message authenticated by using public key. If single key is used throughout the life time, adversaries can easily listen to the communication between the sensor nodes and the base station. To overcome this short term keys are introduced. In shortPK, the base stations broadcast a set of many short length encrypted keys for all the sensor nodes for every short term. The encrypted key contains message and next phase key. Due to long propagation of encrypted keys throughout the network causes propagation delay, decryption failure and packet loss. To overcome this problem we proposed Tree based Short term Group key Algorithm (TSGA) to reduce packet loss and enhance security mechanism by using short term group key in wireless sensor networks. The basic idea of the project is to use many short length group keys to provide the broadcast authentication in wireless sensor networks. The overall network is constructed as tree from base station and the parent and child nodes are established for different levels. Depends on level in tree network group will be formed. The encryption and decryption takes place within the group itself so the propagation delay of public key and packet loss will be reduced. Our simulation result shows that the packet loss is reduced and the data transmission also more secured than previous schemes. . |
---|---|
ISSN: | 0975-8887 0975-8887 |
DOI: | 10.5120/9273-3463 |