Loading…
Atomic force microscopy studies on phase transitions and surface morphology transformation of CMTC crystals
Atomic force microscopy (AFM) has been used to investigate the phase transitions and surface morphology transformation of cadmium mercury thiocyanate (CMTC) crystals, which are highly efficient nonlinear optical (NLO) materials for generating blue-violet light by laser frequency doubling. Amorphous...
Saved in:
Published in: | Applied physics. A, Materials science & processing Materials science & processing, 2002-11, Vol.75 (5), p.617-620 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Atomic force microscopy (AFM) has been used to investigate the phase transitions and surface morphology transformation of cadmium mercury thiocyanate (CMTC) crystals, which are highly efficient nonlinear optical (NLO) materials for generating blue-violet light by laser frequency doubling. Amorphous aggregates at the crystalline steps become greatly contracted and much more crystalloid after the crystal was kept for one day. Elimination of dangling bonds, which lower the surface free energy at the crystal surface, and structural adjustment inside the crystal are assumed to cause this phase transition. Surface morphology transformations were also observed in CMTC crystals during and after multiple scanning by AFM tips. We have visualized the continuous translation process from two-dimensional nuclei to trigonal microcrystals with almost equal sizes during multiple scanning. In other cases, however, the surface morphology did not change at all during scanning, but became greatly altered hours after scanning. These experimental results suggest that reconstruction is a characteristic growth phenomenon on CMTC crystal surfaces. Reconstruction probably results from the formation of intervening metastable phases that have the potential to arrive at more stable stages; however, multiple scanning of AFM tips greatly affects this translation process. |
---|---|
ISSN: | 0947-8396 1432-0630 |
DOI: | 10.1007/s003390101075 |