Loading…

Isothermal versus non-isothermal hot compression process: A comparative study on phase transformations and structure–property relationships

► Fully martensitic microstructure resulted after isothermal hot compression process. ► Isothermally compressed specimen has lower Ms. and Mf temperatures. ► Implementation of non-isothermal hot compressing process demands higher force. ► Application of isothermal hot deformation process is recommen...

Full description

Saved in:
Bibliographic Details
Published in:Materials in engineering 2013-03, Vol.45, p.1-5
Main Authors: Abbasi, M., Naderi, M., Saeed-Akbari, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:► Fully martensitic microstructure resulted after isothermal hot compression process. ► Isothermally compressed specimen has lower Ms. and Mf temperatures. ► Implementation of non-isothermal hot compressing process demands higher force. ► Application of isothermal hot deformation process is recommended. It is known that the direct hot stamping process in which the specimen is deformed and quenched simultaneously results in a high-strength product without the occurrence of springback. In the current work, the effects of isothermal and non-isothermal thermo-mechanical processes on the phase transformations and the resultant microstructure and mechanical properties of 22MnB5 steel are investigated. For the non-isothermal processing route which is similar to direct hot stamping, the specimens were simultaneously compressed and quenched, while in the isothermal route, the specimens were isothermally deformed and subsequently quenched. The results indicated that higher forming loads as well as Ms and Mf temperatures are the characteristics of the former process over the latter one. Additionally, following the isothermal compression process by quenching resulted in a fully martensitic microstructure.
ISSN:0261-3069
DOI:10.1016/j.matdes.2012.08.062